
    rhw                        d dl mZ d dlZd dlmZmZ d dlmZ  ej                  e	      Z
erd dlmZmZmZ 	 d dlmZ 	 	 	 d	 	 	 	 	 	 	 	 	 	 	 	 	 d	dZy# e$ r Y w xY w)
    )annotationsN)TYPE_CHECKINGLiteral)save_or_push_to_hub_modelCrossEncoderSentenceTransformerSparseEncoder)OptimizationConfigc                   ddl m}m}m} 	 ddlm}	m}
 ddlm} t        | |      xr7 t        |       xr* t        | d   d      xr t        | d   j                  |	      }t        | |      xr7 t        |       xr* t        | d   d      xr t        | d   j                  |	      }t        | |      xr t        | j                  |	      }|s|s|st        d      |s|r| d   j                  }n| j                  }|
j!                  |      t        t"              r0|j$                  vrt        d      xs  t'        |             d
t)        fdd|||d| 	       y	# t        $ r t        d      w xY w)a  
    Export an optimized ONNX model from a SentenceTransformer, SparseEncoder, or CrossEncoder model.

    The O1-O4 optimization levels are defined by Optimum and are documented here:
    https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/optimization

    The optimization levels are:

    - O1: basic general optimizations.
    - O2: basic and extended general optimizations, transformers-specific fusions.
    - O3: same as O2 with GELU approximation.
    - O4: same as O3 with mixed precision (fp16, GPU-only)

    See the following pages for more information & benchmarks:

    - `Sentence Transformer > Usage > Speeding up Inference <https://sbert.net/docs/sentence_transformer/usage/efficiency.html>`_
    - `Cross Encoder > Usage > Speeding up Inference <https://sbert.net/docs/cross_encoder/usage/efficiency.html>`_

    Args:
        model (SentenceTransformer | SparseEncoder | CrossEncoder): The SentenceTransformer, SparseEncoder,
            or CrossEncoder model to be optimized. Must be loaded with `backend="onnx"`.
        optimization_config (OptimizationConfig | Literal["O1", "O2", "O3", "O4"]): The optimization configuration or level.
        model_name_or_path (str): The path or Hugging Face Hub repository name where the optimized model will be saved.
        push_to_hub (bool, optional): Whether to push the optimized model to the Hugging Face Hub. Defaults to False.
        create_pr (bool, optional): Whether to create a pull request when pushing to the Hugging Face Hub. Defaults to False.
        file_suffix (str | None, optional): The suffix to add to the optimized model file name. Defaults to None.

    Raises:
        ImportError: If the required packages `optimum` and `onnxruntime` are not installed.
        ValueError: If the provided model is not a valid SentenceTransformer, SparseEncoder, or CrossEncoder model loaded with `backend="onnx"`.
        ValueError: If the provided optimization_config is not valid.

    Returns:
        None
    r   r   )ORTModelORTOptimizer)AutoOptimizationConfigzPlease install Optimum and ONNX Runtime to use this function. You can install them with pip: `pip install optimum[onnxruntime]` or `pip install optimum[onnxruntime-gpu]`
auto_modelz}The model must be a Transformer-based SentenceTransformer, SparseEncoder, or CrossEncoder model loaded with `backend="onnx"`.z\optimization_config must be an OptimizationConfig instance or one of 'O1', 'O2', 'O3', 'O4'.N	optimizedc                ,    j                  |       S )N)file_suffix)optimize)save_dirr   optimization_config	optimizers    y/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/sentence_transformers/backend/optimize.py<lambda>z-export_optimized_onnx_model.<locals>.<lambda>o   s    ););<OQYgr);)s     export_optimized_onnx_modelonnx)	export_functionexport_function_nameconfigmodel_name_or_pathpush_to_hub	create_prr   backendmodel)sentence_transformersr   r	   r
   optimum.onnxruntimer   r   !optimum.onnxruntime.configurationr   ImportError
isinstancelenhasattrr   r$   
ValueErrorfrom_pretrainedstr_LEVELSgetattrr   )r$   r   r    r!   r"   r   r   r	   r
   r   r   r   viable_st_modelviable_se_modelviable_ce_model	ort_modelr   s    `   `          @r   r   r      s   V WV
>L 	5-. 	6J	6E!Hl+	6 uQx**H5	  	5-( 	6J	6E!Hl+	6 uQx**H5	  !5[*U[[RZ:[O/ L
 	
 /#Ah11	#kk	,,Y7I%s+&<&D&DDn  "8%8Rg&<>QRT!s:"-
W  
8
 	

s   E+ +F )FFN)r$   z2SentenceTransformer | SparseEncoder | CrossEncoderr   z4OptimizationConfig | Literal['O1', 'O2', 'O3', 'O4']r    r.   r!   boolr"   r5   r   z
str | NonereturnNone)
__future__r   loggingtypingr   r   #sentence_transformers.backend.utilsr   	getLogger__name__loggerr%   r   r	   r
   r'   r   r(   r    r   r   <module>r@      s    "  ) I			8	$VVH "e=eMe e 	e
 e e 
e	  s   A AA