
    rh                        d dl mZ d dlmZ d dlmZ d dlZd dlmZmZ d dl	m
Z
 d dlmZ  G d d	ej                        Zy)
    )annotations)Iterable)AnyN)Tensornn)util)SentenceTransformerc                  d     e Zd Zdej                  fd fdZddZd	dZd
dZe	dd       Z
 xZS )
CoSENTLossg      4@c                L    t         |           || _        || _        || _        y)a  
        This class implements CoSENT (Cosine Sentence) loss.
        It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing
        the expected similarity score between the pair.

        It computes the following loss function:

        ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the
        batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible
        pairs of input pairs in the batch that match this condition.

        Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`,
        resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used
        as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script.

        Args:
            model: SentenceTransformerModel
            similarity_fct: Function to compute the PAIRWISE similarity
                between embeddings. Default is
                ``util.pairwise_cos_sim``.
            scale: Output of similarity function is multiplied by scale
                value. Represents the inverse temperature.

        References:
            - For further details, see: https://kexue.fm/archives/8847

        Requirements:
            - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1].

        Inputs:
            +--------------------------------+------------------------+
            | Texts                          | Labels                 |
            +================================+========================+
            | (sentence_A, sentence_B) pairs | float similarity score |
            +--------------------------------+------------------------+

        Relations:
            - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``.
            - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended.

        Example:
            ::

                from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
                from datasets import Dataset

                model = SentenceTransformer("microsoft/mpnet-base")
                train_dataset = Dataset.from_dict({
                    "sentence1": ["It's nice weather outside today.", "He drove to work."],
                    "sentence2": ["It's so sunny.", "She walked to the store."],
                    "score": [1.0, 0.3],
                })
                loss = losses.CoSENTLoss(model)

                trainer = SentenceTransformerTrainer(
                    model=model,
                    train_dataset=train_dataset,
                    loss=loss,
                )
                trainer.train()
        N)super__init__modelsimilarity_fctscale)selfr   r   r   	__class__s       z/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/sentence_transformers/losses/CoSENTLoss.pyr   zCoSENTLoss.__init__   s'    | 	
,
    c                r    |D cg c]  }| j                  |      d    }}| j                  ||      S c c}w )Nsentence_embedding)r   compute_loss_from_embeddings)r   sentence_featureslabelssentence_feature
embeddingss        r   forwardzCoSENTLoss.forwardQ   s?    arsM]djj!123GHs
s00VDD ts   4c                   | j                  |d   |d         }|| j                  z  }|dddf   |dddf   z
  }|dddf   |dddf   k  }|j                         }|d|z
  dz  z
  }t        j                  t        j
                  d      j                  |j                        |j                  d      fd      }t        j                  |d      }|S )z
        Compute the CoSENT loss from embeddings.

        Args:
            embeddings: List of embeddings
            labels: Labels indicating the similarity scores of the pairs

        Returns:
            Loss value
        r      Ng   mB)dim)
r   r   floattorchcatzerostodeviceview	logsumexp)r   r   r   scoreslosss        r   r   z'CoSENTLoss.compute_loss_from_embeddingsV   s     $$Z]JqMB$**$46$'?2 46$'?2 1v:-- EKKN--fmm<fkk"oNTUVv1-r   c                H    | j                   | j                  j                  dS )N)r   r   )r   r   __name__r   s    r   get_config_dictzCoSENTLoss.get_config_dicts   s    t7J7J7S7STTr   c                     y)Nz
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
 r.   s    r   citationzCoSENTLoss.citationv   s    r   )r   r	   r   r"   returnNone)r   zIterable[dict[str, Tensor]]r   r   r3   r   )r   zlist[Tensor]r   r   r3   r   )r3   zdict[str, Any])r3   str)r-   
__module____qualname__r   pairwise_cos_simr   r   r   r/   propertyr2   __classcell__)r   s   @r   r   r      s;    BFW[WlWl AFE
:U 	 	r   r   )
__future__r   collections.abcr   typingr   r#   r   r   sentence_transformersr   )sentence_transformers.SentenceTransformerr	   Moduler   r1   r   r   <module>rA      s,    " $    & Is sr   