
    rh;"                         U d dl Z d dlZd dlmZ d dlmZ d dlZd dlmZm	Z	  G d d      Z
dede
d	efd
Zd Zeaeed<   e j                   d        Z G d d      ZddZy)    N)Callable)
deprecated)KernelRegistrationHandlec                   j    e Zd ZdZdefdZed        Zej                  d        Zddde	d	ed
e
fdZy)FakeImplHolderz0A holder where one can register an fake impl to.qualnamec                      || _         g | _        y N)r	   kernels)selfr	   s     k/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/torch/_library/fake_impl.py__init__zFakeImplHolder.__init__   s    % &(    c                 R    t        | j                        dk(  ry | j                  d   S )Nr   )lenr   )r   s    r   kernelzFakeImplHolder.kernel   s%    t||!||Br   c                     t        d      )NzUnable to directly set kernel.RuntimeError)r   values     r   r   zFakeImplHolder.kernel   s    ;<<r   Fallow_overridefuncsourcereturnc                l    |s j                   0t        d j                   d j                   j                   d      t        j
                  j                   j                  d      rt        d j                   d      t        j
                  j                   j                  d      rt        d j                   d      t        ||       j                  j                          fd}t         j                         }|j                   j                  |d|	       t        |      }|S )
z}Register an fake impl.

        Returns a RegistrationHandle that one can use to de-register this
        fake impl.
        z!register_fake(...): the operator z( already has an fake impl registered at .Metaz already has an DispatchKey::Meta implementation via a pre-existing torch.library or TORCH_LIBRARY registration. Please either remove that registration or don't call register_fake.CompositeImplicitAutograda%   already has an implementation for this device type via a pre-existing registration to DispatchKey::CompositeImplicitAutograd.CompositeImplicitAutograd operators do not need an fake impl; instead, the operator will decompose into its constituents and those can have fake impls defined on them.c                  <    j                   j                          y r   )r   remove)r   r   s   r   deregister_fake_kernelz7FakeImplHolder.register.<locals>.deregister_fake_kernelN   s    LL'r   r   )r   r   r	   r   torch_C%_dispatch_has_kernel_for_dispatch_keyr   r   appendconstruct_meta_kernelimplr   )	r   r   r   libr   r$   meta_kernelhandler   s	   `       @r   registerzFakeImplHolder.register"   s&    {{&"7 G>{{))*!- 
 xx==dmmVT"7 G% &  xx==: #7 G; <
 
 f%F#	( ,DMM4@VNS#$:;r   N)__name__
__module____qualname____doc__strr   propertyr   setterr   r   r.    r   r   r   r      sa    :( (    
 ]]= = CH33&)3	3r   r   r	   fake_impl_holderr   c                      j                   J t        j                  j                   j                         fd       }|S )Nc                      j                   J j                   j                  fd}t        |      5   j                   | i |cd d d        S # 1 sw Y   y xY w)Nc                  &    t          d d      )Nz (a  ): You're trying to run this operator with meta Tensors (as opposed to FakeTensors), but this operator may return an output Tensor with data-dependent shape. Meta Tensors don't support operators with outputs that have data-dependent shapes but FakeTensors do. If your operator does not return an output with data-dependent shape, make sure the FakeTensor and/or meta kernel does not call torch.library.get_ctx(). Otherwise, please use FakeTensors.r   )r	   r   s   r   error_on_ctxz@construct_meta_kernel.<locals>.meta_kernel.<locals>.error_on_ctx`   s'    *Bvh 'N O	 	r   )r   r   set_ctx_getter)argskwargsr;   r   r7   r	   s      @r   r,   z*construct_meta_kernel.<locals>.meta_kernel[   s`    &&222!((//
	 L) 	<*#**D;F;	< 	< 	<s   AA)r   	functoolswrapsr   )r	   r7   r,   s   `` r   r)   r)   X   sE    ""...__%,,112< 3<& r   c                       y r   r6   r6   r   r   get_nonerB   r   s    r   global_ctx_getterc              #   8   K   t         }	 | a d  |a y # |a w xY wwr   )rC   )
ctx_getterprevs     r   r<   r<   y   s'      D!& Ds    c                       e Zd ZdZd Z ede      ddddej                  fd	       Z	d
dddej                  fdZ
y)FakeImplCtxzO
    Context object for writing fake implementations for custom operators.
    c                 B    || _         |j                  | _        || _        y r   )
_fake_mode	shape_env
_shape_env_op)r   rJ   rM   s      r   r   zFakeImplCtx.__init__   s    $$..r   zM`create_unbacked_symint` is deprecated, please use `new_dynamic_size` instead)category   Nminmaxr   c                (    | j                  ||      S NrP   )new_dynamic_sizer   rQ   rR   s      r   create_unbacked_symintz"FakeImplCtx.create_unbacked_symint   s    
 $$#$66r   r   c                   | j                   | j                   j                  s3t        j                  j                  j                  | j                        t        |t        j                        st        |t        j                        rt        d| d| d      |dk  rt        d| d      t        | j                   ||      S )a	  Constructs a new symint (symbolic int) representing a data-dependent value.

        This is useful for writing the fake implementation (which is necessary
        for torch.compile) for a CustomOp where an output Tensor has a size
        that depends on the data of the input Tensors.

        Args:
            min (int): A statically known inclusive lower bound for this symint. Default: 0
            max (Optional[int]): A statically known inclusive upper bound for this
                symint. Default: None

        .. warning:

            It is important that the ``min`` and ``max`` (if not None) values are set
            correctly, otherwise, there will be undefined behavior under
            torch.compile. The default value of ``min`` is 2 due to torch.compile
            specializing on 0/1 sizes.

            You must also verify that your implementation on concrete Tensors
            (e.g. CPU/CUDA) only returns Tensors where the size that corresponds
            to the symint also has respects these constraint.
            The easiest way to do this is to add an assertion in the CPU/CUDA/etc
            implementation that the size follows these bounds.

        Example::

            >>> # An operator with data-dependent output shape
            >>> lib = torch.library.Library("mymodule", "FRAGMENT")
            >>> lib.define("mymodule::custom_nonzero(Tensor x) -> Tensor")
            >>>
            >>> @torch.library.register_fake("mymodule::custom_nonzero")
            >>> def _(x):
            >>>     # Number of nonzero-elements is data-dependent.
            >>>     # Since we cannot peek at the data in an fake impl,
            >>>     # we use the ctx object to construct a new symint that
            >>>     # represents the data-dependent size.
            >>>     ctx = torch.library.get_ctx()
            >>>     nnz = ctx.new_dynamic_size()
            >>>     shape = [nnz, x.dim()]
            >>>     result = x.new_empty(shape, dtype=torch.int64)
            >>>     return result
            >>>
            >>> @torch.library.impl(lib, "custom_nonzero", "CPU")
            >>> def _(x):
            >>>     x_np = x.numpy()
            >>>     res = np.stack(np.nonzero(x_np), axis=1)
            >>>     return torch.tensor(res, device=x.device)

        zctx.new_dynamic_size(min=z, max=zZ): expected min and max to be statically known ints but got SymInt. This is not supported.r   zc, ...): expected min to be greater than or equal to 0: this API can only create non-negative sizes.)rL   allow_dynamic_output_shape_opsr%   _subclassesfake_tensorDynamicOutputShapeExceptionrM   
isinstanceSymInt
ValueErrorallocate_sizerV   s      r   rU   zFakeImplCtx.new_dynamic_size   s    f OO#??AA##//KKDHHUUc5<<(JsELL,I+C5se <) *  7+C5 1& '  T__c377r   )r/   r0   r1   r2   r   r   FutureWarningr%   r^   rW   rU   r6   r   r   rH   rH      sV    
 W -.4 7ELL 7	7 '(T F8ell F8r   rH   c                     | j                         }t        j                  j                  j                  j                  |||       |S rT   )rW   r%   fxexperimentalsymbolic_shapes_constrain_range_for_size)rK   min_valmax_valresults       r   r`   r`      sB    --/F	HH))CCG D  Mr   )r   N)
contextlibr?   typingr   typing_extensionsr   r%   torch._library.utilsr   r   r   r3   r)   rB   rC   __annotations__contextmanagerr<   rH   r`   r6   r   r   <module>rp      s|       (  ;J JZC > h 4 ' 8 & ! !W8 W8tr   