
    rh@              	          U d dl Z d dlmZmZmZ d dlZd dlmZ d dl	m
Z
 d dlmZ d dlmZ d dlmZ d dlmZ dd	lmZmZmZmZmZmZmZ dd
lmZmZmZmZm Z m!Z! ddl"m#Z#m$Z$ dgZ%e&e'   e(d<   dedede)fdZ*de&e   de)fdZ+de&e   de&e   de&e   fdZ,dejZ                  defdZ.dedefdZ/dededefdZ0de'dede fdZ1de'dedede fdZ2de'dejZ                  de fdZ3de'd efd!Z4d" Z5d# Z6de'd$ed%e&e   de&e   fd&Z7d'edefd(Z8de'd)ede&e    fd*Z9dedefd+Z:dejZ                  de&e   fd,Z;de'd-ed.ede&e   fd/Z<d'e=e'ef   defd0Z>d1ed2ed3ed4efd5Z?y)6    N)AnyCallablecast)_get_device_module)ShardMetadata)ShardedTensor)DTensor)%compute_local_shape_and_global_offset   )BytesStorageMetadataChunkStorageMetadataMetadataIndexSTATE_DICT_TYPESTORAGE_TYPESTensorPropertiesTensorStorageMetadata)LoadItemTypeReadItemSavePlanTensorWriteData	WriteItemWriteItemType)"_check_shard_metadata_pair_overlap+_shards_get_overlap_region_wrt_saved_tensor create_read_items_for_chunk_list__all__plan
other_planreturnc                 "   | j                   |j                   k7  ryt        | j                        t        |j                        k7  ryt        | j                  |j                        D ]%  \  }}|j                  |j                  k7  r y|j
                  }|j
                  }|j                  |j                  k7  s2|j                  |j                  k7  s|j
                  |j
                  k7  r y|j                  }|j                  }|r|r|s|r y|s|s|j                  |j                  k7  r y|j                  }|j                  }	|r|	r|s|	r y|s|	s|j                  |	j                  k7  s|j                  |	j                  k7  s& y y)a  
    Compare the two Save plans and return True if they are equal.

    Args:
        plan (SavePlan): First SavePlan to compare.
        other_plan (SavePlan): Second SavePlan to compare.

    Returns:
       True if the two plans are equal, False otherwise.
    FT)usablelenitemsziptypeindexfqnoffsettensor_datasizechunkoffsetssizes)
r   r   	plan_itemother_plan_itemplan_metadata_indexother_plan_metadata_indexr)   other_tensor_datar+   other_chunks
             /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/torch/distributed/checkpoint/planner_helpers.py_compare_save_plansr5   '   sn    {{j''' 4::#j..// '*$**j6F6F&G )!"	?>>_111'oo$3$9$9!  ##'@'D'DD"))-F-M-MM"((,E,K,KK  +++77 1 1,#4#9#99  %%E+11Kk5[ MM[%8%88{{k&7&77 S)!V     delta_plansc                 &    t        d | D              S )z
    Check if any delta plan is usable, indicating the plan has changed.

    Args:
        delta_plans (List[SavePlan]): A list of delta plans to check.
    Returns:
        True if any delta plan is usable, False otherwise.
    c              3   <   K   | ]  }|xr |j                     y wN)r!   ).0
delta_plans     r4   	<genexpr>z(_contains_usable_plan.<locals>.<genexpr>q   s     NJz/j///Ns   )any)r7   s    r4   _contains_usable_planr?   h   s     N+NNNr6   cached_plansc                     g }t        | |      D ]6  \  }}|r|j                  s|j                  |       &|j                  |       8 |S )ac  
    Merge a list of delta plans into a single plan.

    Args:
        cached_plans (List[SavePlan]): A list of cached plans.
        delta_plans (List[SavePlan]): A list of delta plans to merge. It can contain empty plans

    Returns:
        A single merged plan. If a delta plan is not usable, use the cached plan. Otherwise, use the delta plan.
    )r$   r!   append)r@   r7   merged_planscached_planr<   s        r4   _merge_delta_local_plansrE   t   sS     L#&|[#A ,Zj//,
+	, r6   tensorc           	          t        t        j                  dgt        | j	                               z        | j	                               S )Nr   r,   r-   )r   torchSizer"   r*   )rF   s    r4   _create_chunk_from_tensorrK      s5    

A3V[[]!334FKKM r6   shard_mdc                     t        t        j                  | j                        t        j                  | j                              S NrH   )r   rI   rJ   shard_offsetsshard_sizes)rL   s    r4   _chunk_for_shardrQ      s3    

8112jj--. r6   sharded_tensorc                    | j                         j                  }t        |j                  |j                  |j
                  |j                  |j                        }t        t        |      || j                         j                        S )N)dtypelayoutrequires_gradmemory_format
pin_memoryr+   
propertiesr*   )metadatatensor_propertiesr   rT   rU   rV   rW   rX   r   rQ   r*   )rR   rL   shard_propertiesrZ   s       r4   _sharded_tensor_metadatar^      s|     &..0BB!$$&&&44&44#..J x($$&++ r6   r'   c                    t        |j                  |j                  |j                        \  }}t	        j
                  |      t	        j
                  |      }}t        t        | |      t        j                  t        t        ||      t        j                  |j                               |j                                     S )NrH   rY   r&   r%   r)   )r
   shapedevice_mesh
placementsrI   rJ   r   r   r   SHARDr   r   r   create_from_tensorto_localr*   )r'   rF   r-   r,   s       r4   _create_write_items_for_dtensorrg      s    :f((&*;*;NE7 ZZ&

7(;7EC)  #& (::6??;LM
 r6   c                     t        j                  |j                        }t        t	        | |      t
        j                  t        ||            S )Nr`   )rI   rJ   rO   r   r   r   rd   r^   )r'   rR   rL   r,   s       r4   _create_write_item_for_shardri      sB     jj//0GC)  ,^XF r6   c                 :   t        j                  dgt        |j                               z        }t	        t        | |      t        j                  t        t        ||j                               t        j                  |      |j                                     S )Nr   rH   rY   r`   )rI   rJ   r"   r*   r   r   r   TENSORr   r   r   re   )r'   rF   r,   s      r4   _create_write_item_for_tensorrl      sq    jj!s6;;=112GC)!!#&wfkkmL'::6B
 r6   bytesc                 J    t        t        |       t        j                        S )N)r&   r%   )r   r   r   BYTE_IO)r'   rm   s     r4   _create_write_item_for_bytesiorp      s     C "" r6   c           
          t        t        j                  | t        j                  |f      |t        j                  |f      t        j                  |f            S N)r%   
dest_indexdest_offsetsstorage_indexstorage_offsetslengths)r   r   ro   rI   rJ   rs   dest_offsetru   storage_offsetlengths        r4   _create_read_item_for_byteior|      sK     !!ZZ/#

N#45

F9% r6   c           
          t        t        j                  | t        j                  |      |t        j                  |      t        j                  |            S rr   )r   r   rk   rI   rJ   rs   rt   ru   rv   rw   s        r4   _create_read_item_for_tensorr      sD       ZZ-#

?3

7# r6   checkpoint_mdlocal_chunksc                    g }t        |      D ]  \  }}t        |j                        D ]  \  }}t        ||      sg }g }	g }
t        ||      D ]:  \  }}}}|j	                  |       |	j	                  |       |
j	                  |       < |j	                  t        t        | |j                  |      |	t        | |j                  |      ||
               |S )aW  
    Create a list of ``ReadItem`` based on the checkpoint and local chunks.

    This applies the resharding algorithm and computes the reads needed
    to satisfy ``local_chunks`` with a checkpoint described by ``checkpoint_md``.

    Args:
        fqn (str) : The state_dict FQN to pass to ``ReadItem``.
        checkpoint_md (TensorStorageMetadata): metadata for a given tensor
            from a checkpoint.
        local_chunks (List[ChunkStorageMetadata]): Local chunks that needs to be
            loaded.

    Returns:
        A list of ``ReadItem`` that will satisfy all input chunks.
    )saved_shardcurrent_shardr~   )	enumeratechunksr   r   rB   r   r   r,   )r'   r   r   
read_itemsidxshardstorage_idx
storage_mdrv   rt   rw   _dimoffset_for_saved_tensoroffset_for_current_tensorr{   s                  r4   r   r      s    * J- 
U'01E1E'F 	#K5eZH OLG =&e
' ')  &&'>?##$=>v&
' ,,S%--E!-"/Z5G5G"U$3#'	: r6   
state_dictc                    g }| j                         D ]  \  t        t              r|j                  t	                     2t        t
              r4|j                  fdj                         j                  D               vt        t        j                        r|j                  t                     |j                  t                      t        |      S )Nc              3   8   K   | ]  }t        |        y wr:   )ri   )r;   rL   r'   objs     r4   r=   z5_create_default_metadata_only_plan.<locals>.<genexpr>8  s"       -S#x@s   )r#   
isinstancer	   rB   rg   r   extendr[   shards_metadatarI   Tensorrl   rp   r   )r   requestsr'   r   s     @@r4   "_create_default_metadata_only_planr   2  s    H$$& FSc7#OO;CEF]+OO  # > >  U\\*OO9#sCDOO:3DEF Hr6   objectc                 6   t        |d      r|j                  | |      S t        |t              r3|j	                         D cg c]  }t        | ||j                         c}S t        |t        j                        rt        | |      gS t        | |      gS c c}w )N__create_write_items__)hasattrr   r   r   local_shardsri   r[   rI   r   rl   rp   )r'   r   r   s      r4   _create_write_itemsr   C  s    v/0,,S&99	FM	*  ,,.
 )fennE
 	
 
FELL	)-c6:;;.sF;<<
s   Bc                     t        | j                  | j                  | j                        \  }}t	        j
                  |      t	        j
                  |      }}t        ||      S rN   )r
   ra   rb   rc   rI   rJ   r   )rF   r-   r,   s      r4   _create_chunk_from_dtensorr   R  sW    :f((&*;*;NE7 ZZ&

7(;7E r6   c                 J   t        | d      r| j                         }|S t        | t              r2| j	                         D cg c]  }t        |j                         }}|S t        | t        j                        rt        |       g}|S t        dt        |              c c}w )N__create_chunk_list__zMUnsupported Type, expecting one of [Tensor, DTensor, ShardedTensor] ,but got )r   r   r   r   r   rQ   r[   rI   r   rK   
ValueErrorr%   )rF   r   r   s      r4   _create_chunk_listr   ]  s    v./335  
FM	*:@:M:M:O
16U^^,
 
  
FELL	)1&9:  V~'
 	

s   B mdr   c                     t        |t              s	 t        |      }t        | ||      S t        t        |       dt        |       dd      gS # t        $ r$}t        d|  ddt	        |       z         |d }~ww xY w)Nz Invalid checkpoint metadata for z, z(expected BytesStorageMetadata but found r   rx   )r   r   r   r   r%   r   r|   r   )r'   r   r   r   exs        r4   _create_read_itemsr   p  s    b./	-c2L 0RFF )(-+C0 
 	
  	23%r:<T"XJGH 	s   A 	A:A55A:c                 p    dt         fd}dt        fd}dt        j                  fd}t	        | |||       y)zP
    Initializes meta tensor if the meta tensor is DTensor or torch.Tensor.
    valuec                    t        | dd       }|t        j                  d      k(  rt        j                  j                         j                  }t        t        j                  t        |      j                               }t        j                  | j                         |      }t        j                  || j                  | j                  | j!                         | j#                               }|S | S )Ndevicemetar   )rb   rc   ra   stride)getattrrI   r   distdistributed_c10d_get_pg_default_devicer%   r   r   current_device
empty_likerf   r	   
from_localrb   rc   r*   r   )r   r   device_typenew_local_tensordtensors        r4   dtensor_funcz&_init_state_dict.<locals>.dtensor_func  s    $/U\\&))//FFHMMK0=LLNF  %//0@P (( !-- ++jjl||~G NLr6   c                     t        | dd       }|t        j                  d      k(  rt        dt	        |        d      | S )Nr   r   zFound unsupported type z for meta device loading.)r   rI   r   RuntimeErrorr%   )r   r   s     r4   sharded_tensor_funcz-_init_state_dict.<locals>.sharded_tensor_func  sF    $/U\\&)))$u+6OP  Lr6   c                 4   t        | dd       }|t        j                  d      k(  rrt        j                  j                         j                  }t        t        j                  t        |      j                               }t        j                  | |      }|S | S )Nr   r   r   )r   rI   r   r   r   r   r%   r   r   r   r   )r   r   r   rF   s       r4   tensor_funcz%_init_state_dict.<locals>.tensor_func  s{    $/U\\&))//FFHMMK0=LLNF %%eF;FMLr6   N)r	   r   rI   r   _iterate_state_dict)r   r   r   r   s       r4   _init_state_dictr     s@    
G *3 
5<< 
 	r6   iter_objectr   r   r   c           	      *   t        | t              r ||       S t        | t              r ||       S t        | t        j                        r ||       S t        | t
        t        t        t        t        j                  f      s| | S t        | t              r+| j                         D ]  \  }}t        ||||      | |<    | S t        | t        t        f      r8| D cg c]  }t        ||||       }}t        | t              rt        |      }|S yc c}w )a$  
    Iterate through the state dict, applying the given functions to each tensor type
    and update the state dict in place.

    Args:
        iter_object (Any): the target state_dict.
        sharded_tensor_func (Callable): the function to apply to ShardedTensor
        dtensor_func (Callable): the function to apply to DTensor
        tensor_func (Callable): the function to apply to Tensor

    # TODO: let state_dict_util._iterate_state_dict() to support in place option
    so we don't need to have two versions of _iterate_state_dict.
    N)r   r	   r   rI   r   intfloatstrrm   ioBytesIOdictr#   r   listtuple)r   r   r   r   keyr   vrets           r4   r   r     s   ( +w'K((	K	/";//	K	.;'';eS% DE	K	&%++- 	JC2|%8+ K	 	K$	/ !
  <1DkR
 
 k5)*C
 
0
s   D)@r   typingr   r   r   rI   torch.distributeddistributedr   torch._utilsr   !torch.distributed._shard.metadatar   'torch.distributed._shard.sharded_tensorr   torch.distributed.tensorr	   torch.distributed.tensor._utilsr
   r[   r   r   r   r   r   r   r   plannerr   r   r   r   r   r   
reshardingr   r   r   r   r   __annotations__boolr5   r?   rE   r   rK   rQ   r^   rg   ri   rl   rp   r|   r   r   r   r   r   r   r   r   r   r    r6   r4   <module>r      sw   	 & &    + ; A , Q    99c 9>h >H > >B	OtH~ 	O$ 	Ox.h 
(^2ell 7K } 1E !-:( g ) (	+7D
s 
ELL 
Y 
 C 

4	4(4 +,4 
(^	4n? x "=S =# =$y/ =w 3G u|| 5I0J &
C 
] 
 
h 
.4c3h 4C 4n,,, ", 	,r6   