
    rh'                     X   d Z ddlmZmZ ddlmZ ddlmZmZm	Z	m
Z
 ddlmZ  ej                  e      Z G d de      Z G d	 d
e      Z ed       G d de             Z ed       G d de	             Z ed       G d de             Z ed       G d de
             Zg dZy)zPyTorch Arcee model.    )auto_docstringlogging   )LlamaConfig)LlamaForCausalLMLlamaForQuestionAnsweringLlamaForSequenceClassificationLlamaForTokenClassification)NemotronMLPc                   d     e Zd ZdZdZdddddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )ArceeConfiga  
    This is the configuration class to store the configuration of a [`ArceeModel`]. It is used to instantiate an Arcee
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the AFM-4.5B-Base.

    Pre-trained weights are available at
    [arcee-ai/AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B)
    and were used to build the examples below.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Arcee model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ArceeModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 18432):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with. AFM-4.5B-Base supports up to 16384 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 128000):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 128001):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'yarn'. The original max position embeddings used during pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn'. The scaling factor to be applied on the attention computation. If unspecified,
                    it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads

    ```python
    >>> from transformers import ArceeModel, ArceeConfig

    >>> # Initializing an Arcee AFM-4.5B-Base style configuration
    >>> configuration = ArceeConfig()

    >>> # Initializing a model from the AFM-4.5B-Base style configuration
    >>> model = ArceeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```arceecolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projc                     t        |   di d|d|d|d|d|d|d|d|d	|	d
|
d|d|d|d|d|d|d|d|d|d|d|| | `y )N
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_rangerms_norm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropoutmlp_biashead_dim )super__init__pretraining_tp)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   kwargs	__class__s                          z/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/arcee/modular_arcee.pyr)   zArceeConfig.__init__   s    2 	 	
!	
#	
 0	
 0		

 !4	
 !4	
 "	
 %<	
 0	
 &	
  	
 &	
 &	
 &	
 !4	
  "!	
" &#	
$ *%	
& 0'	
( )	
* -	
2     )i }  i 
  i H      r0   Nrelu2i   g{Gz?gh㈵>TNi  i Fg     @NFg        FN)__name__
__module____qualname____doc__
model_typebase_model_tp_planr)   __classcell__)r-   s   @r.   r   r       sv    _B J%.%.%.%. )"+   $!-2  2 r/   r   c                       e Zd Zy)ArceeMLPNr2   r3   r4   r'   r/   r.   r:   r:      s    r/   r:   zarcee-ai/AFM-4.5B)
checkpointc                       e Zd Zy)ArceeForCausalLMNr;   r'   r/   r.   r>   r>          r/   r>   c                       e Zd Zy)ArceeForSequenceClassificationNr;   r'   r/   r.   rA   rA      r?   r/   rA   c                       e Zd Zy)ArceeForQuestionAnsweringNr;   r'   r/   r.   rC   rC      r?   r/   rC   c                       e Zd Zy)ArceeForTokenClassificationNr;   r'   r/   r.   rE   rE      r?   r/   rE   )r   r>   rC   rA   rE   
ArceeModelArceePreTrainedModelN)r5   transformers.utilsr   r   llama.configuration_llamar   llama.modeling_llamar   r   r	   r
   nemotron.modeling_nemotronr   
get_loggerr2   loggerr   r:   r>   rA   rC   rE   __all__r'   r/   r.   <module>rO      s     6 3  5 
		H	%^ + ^ B	{ 	 ./	' 	 0	 ./	%C 	 0	 ./	 9 	 0	 ./	"= 	 0	r/   