
    rh                        d Z ddlZddlZddlZddlZddlZddlmZ ddlm	Z	 ddl
mZmZmZ ddlmZ ddlmZmZ dd	lmZmZmZmZmZmZmZmZmZ d
dlmZmZm Z   e       rddl!m"Z"  ejF                  e$      Z% ed      Z&e'ee(e   df   ee(e   df   f   Z)dZ*dZ+dZ,dZ-dZ.d Z/ G d d      Z0 G d de0      Z1d!de2fdZ3d"de2de2fdZ4d Z5d Z6d Z7 G d dee(e   e)f         Z8d gZ9y)#z-Factory function to build auto-model classes.    N)OrderedDict)Iterator)AnyTypeVarUnion   )PretrainedConfig)get_class_from_dynamic_moduleresolve_trust_remote_code)	CONFIG_NAMEcached_file	copy_funcextract_commit_hashfind_adapter_config_fileis_peft_availableis_torch_availableloggingrequires_backends   )
AutoConfigmodel_type_to_module_name!replace_list_option_in_docstrings)GenerationMixin_TaJ  
    This is a generic model class that will be instantiated as one of the model classes of the library when created
    with the [`~BaseAutoModelClass.from_pretrained`] class method or the [`~BaseAutoModelClass.from_config`] class
    method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
ax  
        Instantiates one of the model classes of the library from a configuration.

        Note:
            Loading a model from its configuration file does **not** load the model weights. It only affects the
            model's configuration. Use [`~BaseAutoModelClass.from_pretrained`] to load the model weights.

        Args:
            config ([`PretrainedConfig`]):
                The model class to instantiate is selected based on the configuration class:

                List options
            attn_implementation (`str`, *optional*):
                The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download configuration from huggingface.co and cache.
        >>> config = AutoConfig.from_pretrained("checkpoint_placeholder")
        >>> model = BaseAutoModelClass.from_config(config)
        ```
ac  
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        The model is set in evaluation mode by default using `model.eval()` (so for instance, dropout modules are
        deactivated). To train the model, you should first set it back in training mode with `model.train()`

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args (additional positional arguments, *optional*):
                Will be passed along to the underlying model `__init__()` method.
            config ([`PretrainedConfig`], *optional*):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (*dict[str, torch.Tensor]*, *optional*):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (`bool`, *optional*, defaults to `False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
            proxies (`dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            code_revision (`str`, *optional*, defaults to `"main"`):
                The specific revision to use for the code on the Hub, if the code leaves in a different repository than
                the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
                system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
                allowed by git.
            kwargs (additional keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")

        >>> # Update configuration during loading
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
        >>> model.config.output_attentions
        True

        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        >>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json")
        >>> model = BaseAutoModelClass.from_pretrained(
        ...     "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config
        ... )
        ```
a  
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
                      case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
                      argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
                      using the provided conversion scripts and loading the TensorFlow model afterwards.
            model_args (additional positional arguments, *optional*):
                Will be passed along to the underlying model `__init__()` method.
            config ([`PretrainedConfig`], *optional*):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
                      model).
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (`bool`, *optional*, defaults to `False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                `pretrained_model_name_or_path` argument).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
            proxies (`dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            code_revision (`str`, *optional*, defaults to `"main"`):
                The specific revision to use for the code on the Hub, if the code leaves in a different repository than
                the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
                system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
                allowed by git.
            kwargs (additional keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.

        Examples:

        ```python
        >>> from transformers import AutoConfig, BaseAutoModelClass

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")

        >>> # Update configuration during loading
        >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
        >>> model.config.output_attentions
        True

        >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
        >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
        >>> model = BaseAutoModelClass.from_pretrained(
        ...     "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
        ... )
        ```
c                    |t        |          }t        |t        t        f      s|S |D ci c]  }|j                  | }}t        | dg       }|D ]/  }||v r||   c S d| |v r
|d|    c S d| |v s'|d|    c S  |d   S c c}w )NarchitecturesTFFlaxr   )type
isinstancelisttuple__name__getattr)configmodel_mappingsupported_modelsmodelname_to_modelr   archs          x/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/auto/auto_factory.py_get_model_classr,     s    $T&\2&u68HIuU^^U*IMIFOR8M 0=  &&$[M) 2dV--D6]m+ 4v//0 A Js   Bc                       e Zd ZdZd
dZed        Zededefd       Zede	e
ej                  e
   f   fd       Zedd
d	       Zy)_BaseAutoModelClassNreturnc                     t        | j                  j                   d| j                  j                   d| j                  j                   d      )Nz+ is designed to be instantiated using the `z5.from_pretrained(pretrained_model_name_or_path)` or `z.from_config(config)` methods.)OSError	__class__r#   )selfargskwargss      r+   __init__z_BaseAutoModelClass.__init__  sR    ~~&&' (..112 3''((FH
 	
    c                    |j                  dd       }t        |d      xr | j                  |j                  v }t	        |      | j
                  v }|rN|j                  | j                     }d|v r|j                  d      d   }nd }t        ||j                  |||      }|r|rdv r|j                  d      \  }}n|j                  }t        ||fi |}	|s0| j                  |j                  |	d       |	j                  |        |j                  d	d       }
t        |	      }	 |	j                  |fi |S t	        |      | j
                  v r)t!        || j
                        }	 |	j                  |fi |S t#        d
|j                   d| j                   ddj%                  d | j
                  D               d      )Ntrust_remote_codeauto_map--r   upstream_repoTexist_ok
auto_classcode_revision!Unrecognized configuration class  for this kind of AutoModel: .
Model type should be one of , c              3   4   K   | ]  }|j                     y wNr#   .0cs     r+   	<genexpr>z2_BaseAutoModelClass.from_config.<locals>.<genexpr>       4\AQZZ4\   .)pophasattrr#   r:   r   _model_mappingsplitr   _name_or_pathname_or_pathr
   registerr2   register_for_auto_class$add_generation_mixin_to_remote_model_from_configr,   
ValueErrorjoin)clsr%   r5   r9   has_remote_codehas_local_code	class_refr=   repo_idmodel_class_s              r+   from_configz_BaseAutoModelClass.from_config  s   "JJ':DA!&*5Y#,,&//:Yf););;5Iy  ) 5a 8 $ 9!6#7#7hu! 0y %.__T%:" --7	7UfUK "V--{TJ33s3C

?D1A>{KK+;++F=f==&\S///*633E3EFK+;++F=f==/0@0@/AA^_b_k_k^l m++/994\I[I[4\+\*]]^`
 	
r7   r%   c                     |S )z`Additional autoclass-specific config post-loading manipulation. May be overridden in subclasses. )r]   r%   s     r+   _prepare_config_for_auto_classz2_BaseAutoModelClass._prepare_config_for_auto_class  s	     r7   pretrained_model_name_or_pathc                 :   |j                  dd       }|j                  d      }d|d<   g d}|D ci c]  }||v s||j                  |       }}|j                  dd       }	|j                  dd       }
|j                  dd       }|j                  d	d       }|j                  d
d       }|)t        j                  dt               |t        d      |}|||d	<   |
?t        |t              s"t        |t        fdddd|}t        ||
      }
nt        |dd       }
t               rQ|	i }|||d	<   t        |fd|
i|}|6t        |dd      5 }t        j                   |      }||d<   |d   }d d d        t        |t              st#        j$                  |      }|j                  d      dk(  r|j                  d      }|j                  d      |j                  d      }t'        j(                  |fd|	|
d||\  }}|j                  dd       dk(  rd|d<   |j                  dd       |d   |d<   t+        |d      xr | j,                  |j.                  v }t1        |      | j2                  v }d }|r1|j.                  | j,                     }d|v r|j5                  d      d   }t7        |||||      }||d<   ||d<   |r||rzt9        |fd|	i||}|j                  dd       }|s0| j;                  |j<                  |d       |j?                  |        tA        |      } |j(                  |g|d|i||S t1        |      | j2                  v ritC        || j2                        }|jD                  |jF                  j                  dd       k(  r|jI                         } |j(                  |g|d|i||S t        d|j<                   d | j,                   d!d"jK                  d# | j2                  D               d$      c c}w # 1 sw Y   xY w)%Nr%   r9   T
_from_auto)		cache_dirforce_downloadlocal_files_onlyproxiesresume_downloadrevision	subfolderuse_auth_tokentokenrB   _commit_hashadapter_kwargsrs   rr   zrThe `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.zV`token` and `use_auth_token` are both specified. Please set only the argument `token`.F) _raise_exceptions_for_gated_repo%_raise_exceptions_for_missing_entries'_raise_exceptions_for_connection_errorsrzutf-8)encoding_adapter_model_pathbase_model_name_or_pathtorch_dtypeautoquantization_config)return_unused_kwargsrB   rt   r:   r;   r   r<   r>   r@   text_configrC   rD   rE   rF   c              3   4   K   | ]  }|j                     y wrH   rI   rJ   s     r+   rM   z6_BaseAutoModelClass.from_pretrained.<locals>.<genexpr>]  rN   rO   rP   )&rQ   getwarningswarnFutureWarningr[   r    r	   r   r   r   r$   r   r   openjsonloadcopydeepcopyr   from_pretrainedrR   r#   r:   r   rS   rT   r   r
   rW   r2   rX   rY   r,   config_classsub_configsget_text_configr\   )r]   rh   
model_argsr5   r%   r9   hub_kwargs_namesname
hub_kwargsrB   commit_hashru   rs   rr   resolved_config_filemaybe_adapter_pathfadapter_configkwargs_origrc   r^   r_   r=   r`   rb   s                            r+   r   z#_BaseAutoModelClass.from_pretrained  s   Hd+"JJ':;#|

 :J\TU[^dFJJt,,\
\

?D9jj6$4d;w-#(8$?%MM E   l  #E"'Jwf&67'21( 6;:?<A( !($ 22FT%fndC%!#$.3N7+!9-"<G"KY" "-,cGD ^%)YYq\N<YN#894BC\4]1	^ &"23--/K zz-(F2JJ}-zz/0<JJ45'77-%)+(	
  NFF }d3v=(.}%4d;G0;<Q0R,-!&*5Y#,,&//:Yf););;5Iy  ) 5a 85)'
 '8"# $2 078HUYcgmK 5A "V--{TJ33s3C>{KK.;..-0:CIMW[a  &\S///*633E3EFK''6+=+=+A+A-QU+VV//1.;..-0:CIMW[a  /0@0@/AA^_b_k_k^l m++/994\I[I[4\+\*]]^`
 	
o ]^^ ^s   	PP PPc                     t        |d      r?|j                  j                  |j                  k7  rt        d|j                   d| d      | j                  j                  |||       y)a  
        Register a new model for this class.

        Args:
            config_class ([`PretrainedConfig`]):
                The configuration corresponding to the model to register.
            model_class ([`PreTrainedModel`]):
                The model to register.
        r   zThe model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has z and you passed z!. Fix one of those so they match!r>   N)rR   r   r#   r[   rS   rW   )r]   r   rb   r?   s       r+   rW   z_BaseAutoModelClass.register`  sw     ;/K4L4L4U4UYeYnYn4n66A6N6N5OO_`l_m n.. 
 	##L+#Qr7   r/   NF)r#   
__module____qualname__rS   r6   classmethodrd   r	   rg   r   strosPathLiker   rW   rf   r7   r+   r.   r.     s    N
 $
 $
L 4D IY   I
E#r{{SVGWBW<X I
 I
V R Rr7   r.   c                   @     e Zd ZdZe fd       Ze fd       Z xZS )_BaseAutoBackboneClassNc                    t        | ddg       ddlm} |j                  d |             }|j	                  d      t        d      |j	                  dd	      rt        d
      |j                  d|j                        }|j                  d|j                        }|j                  d|j                        }|j                  d|j                        }	 ||||||	      }t        
| ,  |fi |S )Nvisiontimmr   )TimmBackboneConfigr%   out_featuresz0Cannot specify `out_features` for timm backbonesoutput_loading_infoFz@Cannot specify `output_loading_info=True` when loading from timmnum_channelsfeatures_onlyuse_pretrained_backboneout_indices)backboner   r   r   r   )r   models.timm_backboner   rQ   r   r[   r   r   r   r   superrd   )r]   rh   r   r5   r   r%   r   r   r   r   r2   s             r+   #_load_timm_backbone_from_pretrainedz:_BaseAutoBackboneClass._load_timm_backbone_from_pretrainedx  s    #&12>H&8&:;::n%1OPP::+U3_``zz.&2E2EF

?F4H4HI"(**-FHfHf"gjj0B0BC#2%'$;#
 w"64V44r7   c                 ~    |j                  dd      }|r | j                  |g|i |S t        |   |g|i |S )Nuse_timm_backboneF)rQ   r   r   r   )r]   rh   r   r5   r   r2   s        r+   r   z&_BaseAutoBackboneClass.from_pretrained  sT    "JJ':EB:3::;Xp[epioppw&'D\z\U[\\r7   )r#   r   r   rS   r   r   r   __classcell__)r2   s   @r+   r   r   t  s0    N5 52 ] ]r7   r   head_docc                 n    t        |      dkD  r| j                  dd| d      S | j                  dd      S )Nr   z(one of the model classes of the library z0one of the model classes of the library (with a z head) z-one of the base model classes of the library )lenreplace)	docstringr   s     r+   insert_head_docr     sK    
8}q  6>xjP
 	
 24c r7   checkpoint_for_examplec                 ^   | j                   }| j                  }t        t        |      }|j	                  d|      | _        t        t        j                        }t        t        |      }|j	                  d|      }|j	                  d|      }||_         t        |j                   d      |      }t        |      | _        |j                  d      rt        }n|j                  d      rt        }nt        }t        t        j                         }	t        ||      }|j	                  d|      }|j	                  d|      }|j#                  d      d	   j#                  d
      d   }
|j	                  d|
      }||	_         t        |j                         |	      }	t        |	      | _        | S )N)r   BaseAutoModelClasscheckpoint_placeholderF)use_model_typesr   r   /-r   shortcut_placeholder)rS   r#   r   CLASS_DOCSTRINGr   __doc__r   r.   rd   FROM_CONFIG_DOCSTRINGr   r   
startswithFROM_PRETRAINED_TF_DOCSTRINGFROM_PRETRAINED_FLAX_DOCSTRINGFROM_PRETRAINED_TORCH_DOCSTRINGr   rT   )r]   r   r   r&   r   class_docstringrd   from_config_docstringfrom_pretrained_docstringr   shortcuts              r+   auto_class_updater     s   &&M<<D%oIO!))*>ECK /;;<K+,AHU199:NPTU199:RTjk/Kh3M4P4PbghituK!+.COt$@!		 $B!$C! 3 C CDO /0IT\ ] 9 A ABVX\ ] 9 A ABZ\r s%++C04::3?BH 9 A ABXZb c7OU78T8TUVefO%o6CJr7   c                     g }| j                         D ]8  }t        |t        t        f      r|t        |      z  }(|j	                  |       : |S rH   )valuesr    r!   r"   append)r&   resultr(   s      r+   
get_valuesr     sN    F%%' !edE]+d5k!FMM% 	! Mr7   c           
      8    |y t        |t              rt         fd|D              S t         |      rt         |      S t	        j
                  d      } |k7  r	 t        ||      S t        d| d| d      # t        $ r t        d| d  d| d      w xY w)Nc              3   6   K   | ]  }t        |        y wrH   )getattribute_from_module)rK   amodules     r+   rM   z+getattribute_from_module.<locals>.<genexpr>  s     GQ-fa8Gs   transformerszCould not find z neither in z nor in !z in )r    r"   rR   r$   	importlibimport_moduler   r[   )r   attrtransformers_modules   `  r+   r   r     s    |$G$GGGvtvt$$ $11.A$$	i+,?FF ?4&5H4IKLL  	itfLQdPeefghh	is   A: :Bc                 \   dt        | j                        vr| S dt        | j                        v r| S t        | d      xr dt        t	        | d            v}t        | d      xr dt        t	        | d            v}|s|r+t        | j                  | t        fi | j                        }|S | S )a  
    Adds `GenerationMixin` to the inheritance of `model_class`, if `model_class` is a PyTorch model.

    This function is used for backwards compatibility purposes: in v4.45, we've started a deprecation cycle to make
    `PreTrainedModel` stop inheriting from `GenerationMixin`. Without this function, older models dynamically loaded
    from the Hub may not have the `generate` method after we remove the inheritance.
    ztorch.nn.modules.module.Moduler   generateprepare_inputs_for_generation)	r   __mro__	__bases__rR   r$   r   r#   r   __dict__)rb   has_custom_generate_in_classhas_custom_prepare_inputs!model_class_with_generation_mixins       r+   rY   rY     s     (s;3F3F/GG C 5 566 $+;
#C $HYadZ(b I  !(5T U !Zksv<=t [ $'@,0  ;"@BZ[EYEYBZ-
) 10r7   c                       e Zd ZdZddZdefdZdee   de	fdZ
d Zdeee      fd	Zdee   d
edee	ef   fdZdefdZdee	   fdZdeeee   e	f      fdZdeee      fdZdedefdZddee   de	ddfdZy)_LazyAutoMappinga  
    " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.

    Args:
        - config_mapping: The map model type to config class
        - model_mapping: The map model type to model (or tokenizer) class
    r/   Nc                     || _         |j                         D ci c]  \  }}||
 c}}| _        || _        | | j                  _        i | _        i | _        y c c}}w rH   )_config_mappingitems_reverse_config_mappingrS   _extra_content_modules)r3   config_mappingr&   kvs        r+   r6   z_LazyAutoMapping.__init__  sY    -9G9M9M9O'PA1'P$+-1* 	 (Qs   Ac                     t        | j                  j                               j                  | j                  j                               }t        |      t        | j                        z   S rH   )setr   keysintersectionrS   r   r   )r3   common_keyss     r+   __len__z_LazyAutoMapping.__len__  sP    $..3356CCDDWDWD\D\D^_;#d&9&9":::r7   keyc                    || j                   v r| j                   |   S | j                  |j                     }|| j                  v r!| j                  |   }| j	                  ||      S | j
                  j                         D cg c]  \  }}||j                  k(  s| }}}|D ]3  }|| j                  v s| j                  |   }| j	                  ||      c S  t        |      c c}}w rH   )r   r   r#   rS   _load_attr_from_moduler   r   KeyError)r3   r   
model_type
model_namer   r   model_typesmtypes           r+   __getitem__z_LazyAutoMapping.__getitem__  s    $%%%&&s++11#,,?
,,,,,Z8J..z:FF &*%9%9%?%?%AWTQQ#,,EVqWW  	FE+++!007
225*EE	F sm Xs   C%C%c                     t        |      }|| j                  vr&t        j                  d| d      | j                  |<   t	        | j                  |   |      S )NrP   ztransformers.models)r   r   r   r   r   )r3   r   r   module_names       r+   r   z'_LazyAutoMapping._load_attr_from_module-  sQ    /
;dmm+)2)@)@1[MARTi)jDMM+&'k(BDIIr7   c                     | j                   j                         D cg c]%  \  }}|| j                  v r| j                  ||      ' }}}|t	        | j
                  j                               z   S c c}}w rH   )r   r   rS   r   r!   r   r   )r3   r   r   mapping_keyss       r+   r   z_LazyAutoMapping.keys3  su     "11779
Td))) ''T2
 

 d4#6#6#;#;#=>>>
   *A1defaultc                 H    	 | j                  |      S # t        $ r |cY S w xY wrH   )r  r   )r3   r   r	  s      r+   r   z_LazyAutoMapping.get;  s,    	##C(( 	N	s    !!c                 4    t        | j                               S rH   )boolr   r3   s    r+   __bool__z_LazyAutoMapping.__bool__A      DIIK  r7   c                     | j                   j                         D cg c]%  \  }}|| j                  v r| j                  ||      ' }}}|t	        | j
                  j                               z   S c c}}w rH   )rS   r   r   r   r!   r   r   )r3   r   r   mapping_valuess       r+   r   z_LazyAutoMapping.valuesD  su     "00668
Td*** ''T2
 

 T%8%8%?%?%A BBB
r  c           	         | j                   D cg c]N  }|| j                  v r>| j                  || j                  |         | j                  || j                   |         fP }}|t        | j                  j                               z   S c c}w rH   )rS   r   r   r!   r   r   )r3   r   mapping_itemss      r+   r   z_LazyAutoMapping.itemsL  s     **

 d***	 ++C1E1Ec1JK++C1D1DS1IJ
 
 tD$7$7$=$=$?@@@
s   AB
c                 4    t        | j                               S rH   )iterr   r  s    r+   __iter__z_LazyAutoMapping.__iter__W  r  r7   itemc                     || j                   v ryt        |d      r|j                  | j                  vry| j                  |j                     }|| j                  v S )NTr#   F)r   rR   r#   r   rS   )r3   r  r   s      r+   __contains__z_LazyAutoMapping.__contains__Z  sV    4&&&tZ(DMMA]A],]11$--@
T0000r7   valuec                     t        |d      rP|j                  | j                  v r8| j                  |j                     }|| j                  v r|st	        d| d      || j
                  |<   y)z7
        Register a new model in this mapping.
        r#   'z*' is already used by a Transformers model.N)rR   r#   r   rS   r[   r   )r3   r   r  r?   r   s        r+   rW   z_LazyAutoMapping.registerb  sh     3
#8T8T(T55cllCJT000 1SE)S!TUU#(C r7   r   r   )r#   r   r   r   r6   intr   r   r	   _LazyAutoMappingValuer  r   r!   r   r   r   r   r  r  r   r"   r   r   r  r  rW   rf   r7   r+   r   r     s   ; ;t$45 :O  J?d4 012 ?t,-  uEZ\^E^?_ !$ !C23 C	AtE$'7"8:O"OPQ 	A!(4(8#9: !1 1$ 1	)D!12 	);P 	)ei 	)r7   r   r   ) )zgoogle-bert/bert-base-casedr  ):r   r   r   r   r   r   collectionsr   collections.abcr   typingr   r   r   configuration_utilsr	   dynamic_module_utilsr
   r   utilsr   r   r   r   r   r   r   r   r   configuration_autor   r   r   
generationr   
get_loggerr#   loggerr   r"   r   r  r   r   r   r   r   r,   r.   r   r   r   r   r   r   rY   r   __all__rf   r7   r+   <module>r+     sA   4    	  # $ & & 3 \
 
 
 i h - 
		H	%T]eDItO4eDItO6LLM  4j# Xa  Fa" H(TR TRn$]0 $]N  3  be  FM(@c){4(8#9;P#PQ c)L .r7   