
    rh                        U d Z ddlZddlZddlZddlZddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZmZmZmZmZ ddlmZ ddlm Z  ddl!m"Z"m#Z#m$Z$m%Z%  ejL                  e'      Z(dgZ)er e       Z*ee+e,e	e+   e	e+   f   f   e-d<   n
 eg d      Z*e*j]                         D ]!  \  Z/\  Z0Z1 e       sdZ0 e       sdZ1e0e1fe*e/<   #  e e"e*      Z2de+fdZ3	 	 	 	 	 	 	 d#de
e+ejh                  f   de	e
e+ejh                  f      de5de	e5   de	e6e+e+f      de	e
e5e+f      de	e+   de5fdZ7d Z8 ed       G d  d!             Z9d"d!gZ:y)$zAutoImageProcessor class.    N)OrderedDict)TYPE_CHECKINGOptionalUnion   )PretrainedConfig)get_class_from_dynamic_moduleresolve_trust_remote_code)ImageProcessingMixin)BaseImageProcessorFast)CONFIG_NAMEIMAGE_PROCESSOR_NAMEcached_fileis_timm_config_dictis_timm_local_checkpointis_torchvision_availableis_vision_availablelogging)requires   )_LazyAutoMapping)CONFIG_MAPPING_NAMES
AutoConfigmodel_type_to_module_name!replace_list_option_in_docstringsQwen2VLImageProcessorIMAGE_PROCESSOR_MAPPING_NAMES))aimv2CLIPImageProcessorCLIPImageProcessorFast)aimv2_vision_modelr   )alignEfficientNetImageProcessorEfficientNetImageProcessorFast)aria)AriaImageProcessorN)beitBeitImageProcessorBeitImageProcessorFast)bitBitImageProcessorBitImageProcessorFast)blipBlipImageProcessorBlipImageProcessorFast)zblip-2r2   )bridgetower)BridgeTowerImageProcessorBridgeTowerImageProcessorFast)	chameleon)ChameleonImageProcessorChameleonImageProcessorFast)chinese_clip)ChineseCLIPImageProcessorChineseCLIPImageProcessorFast)clipr   )clipsegViTImageProcessorViTImageProcessorFast)cohere2_vision)NCohere2VisionImageProcessorFast)conditional_detr)ConditionalDetrImageProcessor!ConditionalDetrImageProcessorFast)convnextConvNextImageProcessorConvNextImageProcessorFast)
convnextv2rI   )cvtrI   )zdata2vec-visionr*   )deepseek_vl)DeepseekVLImageProcessorDeepseekVLImageProcessorFast)deepseek_vl_hybrid)DeepseekVLHybridImageProcessor"DeepseekVLHybridImageProcessorFast)deformable_detr)DeformableDetrImageProcessor DeformableDetrImageProcessorFast)deit)DeiTImageProcessorDeiTImageProcessorFast)depth_anythingDPTImageProcessorDPTImageProcessorFast)	depth_pro)DepthProImageProcessorDepthProImageProcessorFast)deta)DetaImageProcessorN)detr)DetrImageProcessorDetrImageProcessorFast)dinatr@   )dinov2r.   )z
donut-swin)DonutImageProcessorDonutImageProcessorFast)dptr[   )efficientformer)EfficientFormerImageProcessorN)efficientloftr)EfficientLoFTRImageProcessorN)efficientnetr$   )eomt)EomtImageProcessorEomtImageProcessorFast)flava)FlavaImageProcessorFlavaImageProcessorFast)focalnetr.   )fuyu)FuyuImageProcessorN)gemma3Gemma3ImageProcessorGemma3ImageProcessorFast)gemma3nSiglipImageProcessorSiglipImageProcessorFast)gitr   )glm4v)Glm4vImageProcessorGlm4vImageProcessorFast)glpn)GLPNImageProcessorN)got_ocr2)GotOcr2ImageProcessorGotOcr2ImageProcessorFast)zgrounding-dinoGroundingDinoImageProcessorGroundingDinoImageProcessorFast)groupvitr   )hierar.   )idefics)IdeficsImageProcessorN)idefics2)Idefics2ImageProcessorIdefics2ImageProcessorFast)idefics3)Idefics3ImageProcessorIdefics3ImageProcessorFast)ijepar@   )imagegpt)ImageGPTImageProcessorN)instructblipr2   )instructblipvideo)InstructBlipVideoImageProcessorN)janus)JanusImageProcessorJanusImageProcessorFast)zkosmos-2r   )
layoutlmv2)LayoutLMv2ImageProcessorLayoutLMv2ImageProcessorFast)
layoutlmv3LayoutLMv3ImageProcessorLayoutLMv3ImageProcessorFast)levit)LevitImageProcessorLevitImageProcessorFast)	lightglue)LightGlueImageProcessorN)llama4)Llama4ImageProcessorLlama4ImageProcessorFast)llava)LlavaImageProcessorLlavaImageProcessorFast)
llava_next)LlavaNextImageProcessorLlavaNextImageProcessorFast)llava_next_video)LlavaNextVideoImageProcessorN)llava_onevision)LlavaOnevisionImageProcessor LlavaOnevisionImageProcessorFast)mask2former)Mask2FormerImageProcessorMask2FormerImageProcessorFast)
maskformer)MaskFormerImageProcessorMaskFormerImageProcessorFast)zmgp-strr@   )mistral3PixtralImageProcessorPixtralImageProcessorFast)mlcdr   )mllama)MllamaImageProcessorN)zmm-grounding-dinor   )mobilenet_v1)MobileNetV1ImageProcessorMobileNetV1ImageProcessorFast)mobilenet_v2)MobileNetV2ImageProcessorMobileNetV2ImageProcessorFast)	mobilevitMobileViTImageProcessorMobileViTImageProcessorFast)mobilevitv2r   )natr@   )nougat)NougatImageProcessorNougatImageProcessorFast)	oneformer)OneFormerImageProcessorOneFormerImageProcessorFast)owlv2)Owlv2ImageProcessorOwlv2ImageProcessorFast)owlvit)OwlViTImageProcessorOwlViTImageProcessorFast)	paligemmar~   )	perceiver)PerceiverImageProcessorPerceiverImageProcessorFast)perception_lm)NPerceptionLMImageProcessorFast)phi4_multimodal)N Phi4MultimodalImageProcessorFast)
pix2struct)Pix2StructImageProcessorN)pixtralr   )
poolformer)PoolFormerImageProcessorPoolFormerImageProcessorFast)prompt_depth_anything)!PromptDepthAnythingImageProcessorN)pvtPvtImageProcessorPvtImageProcessorFast)pvt_v2r   )
qwen2_5_vlr   Qwen2VLImageProcessorFast)qwen2_vlr   )regnetrI   )resnetrI   )rt_detr)RTDetrImageProcessorRTDetrImageProcessorFast)samSamImageProcessorSamImageProcessorFast)sam_hqr   )	segformerSegformerImageProcessorSegformerImageProcessorFast)seggpt)SegGptImageProcessorN)shieldgemma2rz   )siglipr~   )siglip2)Siglip2ImageProcessorSiglip2ImageProcessorFast)smolvlm)SmolVLMImageProcessorSmolVLMImageProcessorFast)	superglue)SuperGlueImageProcessorN)
superpoint)SuperPointImageProcessorSuperPointImageProcessorFast)swiftformerr@   )swinr@   )swin2sr)Swin2SRImageProcessorSwin2SRImageProcessorFast)swinv2r@   )ztable-transformer)rd   N)timesformerVideoMAEImageProcessorN)timm_wrapper)TimmWrapperImageProcessorN)tvlt)TvltImageProcessorN)tvp)TvpImageProcessorN)udopr   )upernetr  )vanrI   )videomaer  )vilt)ViltImageProcessorViltImageProcessorFast)vipllavar   )vitr@   )
vit_hybrid)ViTHybridImageProcessorN)vit_maer@   )vit_msnr@   )vitmatte)VitMatteImageProcessorVitMatteImageProcessorFast)xclipr   )yolos)YolosImageProcessorYolosImageProcessorFast)zoedepth)ZoeDepthImageProcessorZoeDepthImageProcessorFast
class_namec                    | dk(  rt         S t        j                         D ]<  \  }}| |v st        |      }t	        j
                  d| d      }	 t        ||       c S  t        j                  j                         D ]  }|D ]  }t        |dd       | k(  s|c c S  ! t	        j
                  d      }t        ||       rt        ||       S y # t        $ r Y w xY w)Nr   .ztransformers.models__name__transformers)r   r   itemsr   	importlibimport_modulegetattrAttributeErrorIMAGE_PROCESSOR_MAPPING_extra_contentvalueshasattr)r;  module_name
extractorsmodule	extractormain_modules         /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/auto/image_processing_auto.py#get_image_processor_class_from_namerO     s    --%%#@#F#F#H Z#3K@K,,q->@UVFvz22 .<<CCE !
# 	!Iy*d3zA  	!! )).9K{J'{J// " s   C	CCpretrained_model_name_or_path	cache_dirforce_downloadresume_downloadproxiestokenrevisionlocal_files_onlyc                 T   |j                  dd      }	|	)t        j                  dt               |t	        d      |	}t        | t        |||||||ddd      }
|
t        j                  d       i S t        |
d	      5 }t        j                  |      cddd       S # 1 sw Y   yxY w)
a  
    Loads the image processor configuration from a pretrained model image processor configuration.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download:
            Deprecated and ignored. All downloads are now resumed by default when possible.
            Will be removed in v5 of Transformers.
        proxies (`dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `hf auth login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the image processor configuration from local files.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Dict`: The configuration of the image processor.

    Examples:

    ```python
    # Download configuration from huggingface.co and cache.
    image_processor_config = get_image_processor_config("google-bert/bert-base-uncased")
    # This model does not have a image processor config so the result will be an empty dict.
    image_processor_config = get_image_processor_config("FacebookAI/xlm-roberta-base")

    # Save a pretrained image processor locally and you can reload its config
    from transformers import AutoTokenizer

    image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
    image_processor.save_pretrained("image-processor-test")
    image_processor_config = get_image_processor_config("image-processor-test")
    ```use_auth_tokenNrThe `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.V`token` and `use_auth_token` are both specified. Please set only the argument `token`.F)
rQ  rR  rS  rT  rU  rV  rW   _raise_exceptions_for_gated_repo%_raise_exceptions_for_missing_entries'_raise_exceptions_for_connection_errorszbCould not locate the image processor configuration file, will try to use the model config instead.zutf-8)encoding)popwarningswarnFutureWarning
ValueErrorr   r   loggerinfoopenjsonload)rP  rQ  rR  rS  rT  rU  rV  rW  kwargsrY  resolved_config_filereaders               rN  get_image_processor_configrm     s    J ZZ 0$7N! A	
 uvv&%%'))..305 #p	
 		"W	5 !yy ! ! !s   ?BB'c                 6    t         j                  d|  d       y )NzFast image processor class zz is available for this model. Using slow image processor class. To use the fast image processor class set `use_fast=True`.)re  warning)
fast_classs    rN  '_warning_fast_image_processor_availablerq  Q  s!    
NN
%j\ 2g 	g    )vision)backendsc                   V    e Zd ZdZd Ze ee      d               Ze		 	 	 	 dd       Z
y)AutoImageProcessora%  
    This is a generic image processor class that will be instantiated as one of the image processor classes of the
    library when created with the [`AutoImageProcessor.from_pretrained`] class method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
    c                     t        d      )NzAutoImageProcessor is designed to be instantiated using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.)OSError)selfs    rN  __init__zAutoImageProcessor.__init__a  s    d
 	
rr  c                 	   |j                  dd      }|;t        j                  dt               |j	                  d      t        d      ||d<   |j                  dd      }|j                  dd      }|j                  dd      }d	|d
<   d|v r|j                  d      }nt        |      rt        }nt        }	 t        j                  |fd|i|\  }	}
|	j	                  dd      }d}d|	j	                  di       v r|	d   d   }|V|T|	j                  dd      }||j                  dd      }d|	j	                  di       v r|	d   d   }|j                  dd      }|`|^t        |t              st!        j"                  |fd|i|}t%        |dd      }t'        |d      rd|j(                  v r|j(                  d   }d}|A|W|j+                  d      }|s-|t,        v r%t/               rd	}t0        j3                  d| d       |st0        j3                  d       |r|j+                  d      s|dz  }|r@t/               s6t5        |dd       }|t        d| d      t0        j3                  d       d}|rGt6        j9                         D ]  }||v s n |dd }d}t0        j3                  d       t5        |      }nE|j+                  d      r|dd n|}t5        |      }| |j+                  d      rt        d| d      |du}|duxs t;        |      t<        v }|rR|t        |t>              s|df}|r|d   |d   }n|d   }d |v r|jA                  d       d   }nd}tC        |||||      }|rY|rW|s|d   tE        |d          tG        |fi |}|j                  d!d      }
|jI                           |jJ                  |	fi |S | |jJ                  |	fi |S t;        |      t<        v ret<        t;        |         }|\  }}|s|tE        |       |r|s| |j"                  |g|i |S | |j"                  |g|i |S t        d"      t        d#| d$t         d%t         d&t         d'd(jM                  d) t6        D               
      # t        $ rH}	 t        j                  |fdt        i|\  }	}
n# t        $ r |w xY wt        |	      s|Y d}~d}~ww xY w)*aI  
        Instantiate one of the image processor classes of the library from a pretrained model vocabulary.

        The image processor class to instantiate is selected based on the `model_type` property of the config object
        (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
        missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Params:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained image_processor hosted inside a model repo on
                  huggingface.co.
                - a path to a *directory* containing a image processor file saved using the
                  [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
                  `./my_model_directory/`.
                - a path or url to a saved image processor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model image processor should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force to (re-)download the image processor files and override the cached versions if
                they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
            proxies (`dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `hf auth login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            use_fast (`bool`, *optional*, defaults to `False`):
                Use a fast torchvision-base image processor if it is supported for a given model.
                If a fast image processor is not available for a given model, a normal numpy-based image processor
                is returned instead.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final image processor object. If `True`, then this
                functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
                consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
                `kwargs` which has not been used to update `image_processor` and is otherwise ignored.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            image_processor_filename (`str`, *optional*, defaults to `"config.json"`):
                The name of the file in the model directory to use for the image processor config.
            kwargs (`dict[str, Any]`, *optional*):
                The values in kwargs of any keys which are image processor attributes will be used to override the
                loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
                controlled by the `return_unused_kwargs` keyword parameter.

        <Tip>

        Passing `token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor

        >>> # Download image processor from huggingface.co and cache.
        >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")

        >>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
        >>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")
        ```rY  NrZ  rU  r[  configuse_fasttrust_remote_codeT
_from_autoimage_processor_filenameimage_processor_typerv  auto_mapfeature_extractor_typeFeatureExtractorImageProcessorAutoFeatureExtractorFastzThe image processor of type `aS  ` is now loaded as a fast processor by default, even if the model checkpoint was saved with a slow processor. This is a breaking change and may produce slightly different outputs. To continue using the slow processor, instantiate this class with `use_fast=False`. Note that this behavior will be extended to all models in a future release.aC  Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.`zU` requires `torchvision` to be installed. Please install `torchvision` and try again.zcUsing `use_fast=True` but `torchvision` is not available. Falling back to the slow image processor.Fzz`use_fast` is set to `True` but the image processor class does not have a fast version.  Falling back to the slow version.z\` does not have a slow version. Please set `use_fast=True` when instantiating the processor.r   r   z--code_revisionzZThis image processor cannot be instantiated. Please make sure you have `Pillow` installed.z Unrecognized image processor in z2. Should have a `image_processor_type` key in its z of z3, or one of the following `model_type` keys in its z: z, c              3       K   | ]  }|  y w)N ).0cs     rN  	<genexpr>z5AutoImageProcessor.from_pretrained.<locals>.<genexpr>j  s     @jq@js   )'r`  ra  rb  rc  getrd  r   r   r   r   get_image_processor_dict	Exceptionr   replace
isinstancer   r   from_pretrainedrC  rH  r  endswithFORCE_FAST_IMAGE_PROCESSORr   re  warning_oncerO  r   rG  typerE  tuplesplitr
   rq  r	   register_for_auto_class	from_dictjoin)clsrP  inputsrj  rY  r|  r}  r~  r  config_dict_initial_exceptionr  image_processor_auto_mapfeature_extractor_classfeature_extractor_auto_mapimage_processor_classimage_processorsimage_processor_type_slowhas_remote_codehas_local_code	class_refupstream_repoimage_processor_tupleimage_processor_class_pyimage_processor_class_fasts                             rN  r  z"AutoImageProcessor.from_pretrainedg  s_   ^  $4d;%MM E zz'". l  -F7OHd+::j$/"JJ':DA#| &/'-zz2L'M$%&CD'2$';$	(1JJ-H`djNK(  +/EtL#' ;??:r#BB'2:'>?S'T$  ',D,L&1oo6NPT&U#&2'>'F'FGY[k'l$%R)HH-8-DE[-\*+E+M+MN`br+s(  ',D,Lf&67#331&7  $+63I4#P vz*/Cv/V+1??;O+P( $+/88@$8<V$V[s[u#H''78L7M Nf f
  ''P
  4 = =f E$.$ 8 :(KL`adbdLe(f%(0$01  2G  H  ##y !(E(L(L(N 	$+/??	 ,@+D($H''= )LL`(a% 2F1N1Nv1V("-\p * )LLe(f%(05I5R5RSY5Z$01  2N  O  3$>.d:ed6lNe>e'3JG_af<g,Dd+K(4Q7C4Q7	4Q7	y  ) 5a 8 $ 9!#@.Racp! 0 8 ; G78PQR8ST$A)Mj$unt$u!

?D1A!99;2(22;I&II".2(22;I&II&\44$;DL$I!CX@$&@ : F78RS)x;S;[A1AAB_sbhslrss+7C3CCDaudjuntuu$t  ./L.M N11E0Fd;- X((3}Btyy@jLi@j7j6km
 	
c  	(
(!5!N!N1"LW"[a"Q  (''(
 '{3'' 4	(s*   :R 	S+$SS&SS&&S+Nc                    |)|t        d      t        j                  dt               |}||t        d      |t	        |t
              rt        d      |t	        |t
              st        d      |=|;t	        |t
              r+|j                  |k7  rt        d|j                   d| d	      | t        j                  v rt        |    \  }}||}||}t        j                  | ||f|
       y)a)  
        Register a new image processor for this class.

        Args:
            config_class ([`PretrainedConfig`]):
                The configuration corresponding to the model to register.
            image_processor_class ([`ImageProcessingMixin`]): The image processor to register.
        NzHCannot specify both image_processor_class and slow_image_processor_classzThe image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadzSYou need to specify either slow_image_processor_class or fast_image_processor_classzIYou passed a fast image processor in as the `slow_image_processor_class`.zNThe `fast_image_processor_class` should inherit from `BaseImageProcessorFast`.zThe fast processor class you are passing has a `slow_image_processor_class` attribute that is not consistent with the slow processor class you passed (fast tokenizer has z and you passed z!. Fix one of those so they match!)exist_ok)
rd  ra  rb  rc  
issubclassr   slow_image_processor_classrE  rF  register)config_classr  r  fast_image_processor_classr  existing_slowexisting_fasts          rN  r  zAutoImageProcessor.registerm  sE     !,)5 !kllMM r *?&%-2L2Trss%1jA[]s6thii%1*&(>;
 mnn '2*657MN*EEIcc[-HHIIYZtYu v!!  2AAA+B<+P(M=)1-:*)1-:*((57QR]e 	) 	
rr  )NNNF)r>  
__module____qualname____doc__rz  classmethodr   r   r  staticmethodr  r  rr  rN  rv  rv  X  sT    
 &'DEB
 F B
H  ##'#'8
 8
rr  rv  rE  )NFNNNNF);r  rA  rh  osra  collectionsr   typingr   r   r   configuration_utilsr   dynamic_module_utilsr	   r
   image_processing_utilsr   image_processing_utils_fastr   utilsr   r   r   r   r   r   r   r   utils.import_utilsr   auto_factoryr   configuration_autor   r   r   r   
get_loggerr>  re  r  r   strr  __annotations__r@  
model_type
slow_classrp  rE  rO  PathLikebooldictrm  rq  rv  __all__r  rr  rN  <module>r     s       	  # 1 1 4 \ : A	 	 	 + *  
		H	% 66   \g[h!;sE(3-RU:V4W/W#Xh$/B	
D%!N -J,O,O,Q I(J(Z 
#%
1;Z0H!*-I ++?A^_ C < 48 &*(,(,""d!#(bkk)9#:d!c2;;./0d! d! d^	d!
 d38n%d! E$)$%d! smd! d!N 
;M
 M
  M
`
 %&:
;rr  