
    rh{J                     |   U d Z ddlZddlZddlZddlZddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZm Z   ejB                  e"      Z#er e       Z$ee%e&e	e%   e	e%   f   f   e'd<   n
 eg d      Z$e$jQ                         D ]  \  Z)Z*e*Z+ e       sdZ+e+e$e)<     eee$      Z,de%fdZ-	 	 	 	 	 	 	 d de
e%ej\                  f   de	e
e%ej\                  f      de/de	e/   de	e0e%e%f      de	e
e/e%f      de	e%   de/fdZ1 ed       G d d             Z2ddgZ3y)!zAutoVideoProcessor class.    N)OrderedDict)TYPE_CHECKINGOptionalUnion   )PretrainedConfig)get_class_from_dynamic_moduleresolve_trust_remote_code)CONFIG_NAMEVIDEO_PROCESSOR_NAMEcached_fileis_torchvision_availablelogging)requires)BaseVideoProcessor   )_LazyAutoMapping)CONFIG_MAPPING_NAMES
AutoConfigmodel_type_to_module_name!replace_list_option_in_docstringsVIDEO_PROCESSOR_MAPPING_NAMES))glm4vGlm4vVideoProcessor)instructblipInstructBlipVideoVideoProcessor)instructblipvideor   )internvlInternVLVideoProcessor)llava_next_videoLlavaNextVideoVideoProcessor)llava_onevisionLlavaOnevisionVideoProcessor)qwen2_5_omniQwen2VLVideoProcessor)
qwen2_5_vlr%   )qwen2_vlr%   )smolvlmSmolVLMVideoProcessor)video_llavaVideoLlavaVideoProcessor)vjepa2VJEPA2VideoProcessor
class_namec                    t         j                         D ]<  \  }}| |v st        |      }t        j                  d| d      }	 t        ||       c S  t        j                  j                         D ]  }t        |dd       | k(  s|c S  t        j                  d      }t        ||       rt        ||       S y # t        $ r Y w xY w)N.ztransformers.models__name__transformers)r   itemsr   	importlibimport_modulegetattrAttributeErrorVIDEO_PROCESSOR_MAPPING_extra_contentvalueshasattr)r.   module_name
extractorsmodule	extractormain_modules         /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/auto/video_processing_auto.pyvideo_processor_class_from_namerB   L   s    #@#F#F#H Z#3K@K,,q->@UVFvz22 -;;BBD 	9j$/:= )).9K{J'{J// " s   B99	CCpretrained_model_name_or_path	cache_dirforce_downloadresume_downloadproxiestokenrevisionlocal_files_onlyc                 N   |j                  dd      }	|	)t        j                  dt               |t	        d      |	}t        | t        |||||||	      }
|
t        j                  d       i S t        |
d      5 }t        j                  |      cddd       S # 1 sw Y   yxY w)	a  
    Loads the video processor configuration from a pretrained model video processor configuration.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download:
            Deprecated and ignored. All downloads are now resumed by default when possible.
            Will be removed in v5 of Transformers.
        proxies (`dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `hf auth login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the video processor configuration from local files.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Dict`: The configuration of the video processor.

    Examples:

    ```python
    # Download configuration from huggingface.co and cache.
    video_processor_config = get_video_processor_config("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
    # This model does not have a video processor config so the result will be an empty dict.
    video_processor_config = get_video_processor_config("FacebookAI/xlm-roberta-base")

    # Save a pretrained video processor locally and you can reload its config
    from transformers import AutoVideoProcessor

    video_processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
    video_processor.save_pretrained("video-processor-test")
    video_processor = get_video_processor_config("video-processor-test")
    ```use_auth_tokenNrThe `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.V`token` and `use_auth_token` are both specified. Please set only the argument `token`.)rD   rE   rF   rG   rH   rI   rJ   zbCould not locate the video processor configuration file, will try to use the model config instead.zutf-8)encoding)popwarningswarnFutureWarning
ValueErrorr   r   loggerinfoopenjsonload)rC   rD   rE   rF   rG   rH   rI   rJ   kwargsrL   resolved_config_filereaders               rA   get_video_processor_configr]   d   s    J ZZ 0$7N! A	
 uvv&%%')
 #p	
 		"W	5 !yy ! ! !s   <BB$)visiontorchvision)backendsc                   P    e Zd ZdZd Ze ee      d               Ze		 dd       Z
y)AutoVideoProcessora%  
    This is a generic video processor class that will be instantiated as one of the video processor classes of the
    library when created with the [`AutoVideoProcessor.from_pretrained`] class method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
    c                     t        d      )NzAutoVideoProcessor is designed to be instantiated using the `AutoVideoProcessor.from_pretrained(pretrained_model_name_or_path)` method.)OSError)selfs    rA   __init__zAutoVideoProcessor.__init__   s    d
 	
    c                 Z   |j                  dd      }|;t        j                  dt               |j	                  d      t        d      ||d<   |j                  dd      }|j                  dd      }d|d	<   t        j                  |fi |\  }}|j	                  d
d      }	d}
d|j	                  di       v r|d   d   }
|	n|
l|j                  dd      }|*|j                  dd      }|t        j                         v r|}	d|j	                  di       v r|d   d   }|j                  dd      }
|	`|
^t        |t              st        j                  |fd|i|}t        |d
d      }	t!        |d      rd|j"                  v r|j"                  d   }
|	t%        |	      }	|
du}|	duxs t'        |      t(        v }t+        ||||      }|rF|rD|
}t-        ||fi |}	|j                  dd      }|	j/                           |	j0                  |fi |S |	 |	j0                  |fi |S t'        |      t(        v r5t(        t'        |         }	|	 |	j                  |g|i |S t        d      t        d| dt2         dt4         dt4         ddj7                  d t        D               
      )a[  
        Instantiate one of the video processor classes of the library from a pretrained model vocabulary.

        The video processor class to instantiate is selected based on the `model_type` property of the config object
        (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
        missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Params:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained video_processor hosted inside a model repo on
                  huggingface.co.
                - a path to a *directory* containing a video processor file saved using the
                  [`~video_processing_utils.BaseVideoProcessor.save_pretrained`] method, e.g.,
                  `./my_model_directory/`.
                - a path or url to a saved video processor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model video processor should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force to (re-)download the video processor files and override the cached versions if
                they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
            proxies (`dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `hf auth login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final video processor object. If `True`, then this
                functions returns a `Tuple(video_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
                consisting of the key/value pairs whose keys are not video processor attributes: i.e., the part of
                `kwargs` which has not been used to update `video_processor` and is otherwise ignored.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            kwargs (`dict[str, Any]`, *optional*):
                The values in kwargs of any keys which are video processor attributes will be used to override the
                loaded values. Behavior concerning key/value pairs whose keys are *not* video processor attributes is
                controlled by the `return_unused_kwargs` keyword parameter.

        <Tip>

        Passing `token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        >>> from transformers import AutoVideoProcessor

        >>> # Download video processor from huggingface.co and cache.
        >>> video_processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")

        >>> # If video processor files are in a directory (e.g. video processor was saved using *save_pretrained('./test/saved_model/')*)
        >>> # video_processor = AutoVideoProcessor.from_pretrained("./test/saved_model/")
        ```rL   NrM   rH   rN   configtrust_remote_codeT
_from_autovideo_processor_typerb   auto_mapimage_processor_typeImageProcessorVideoProcessorAutoImageProcessorcode_revisionz_This video processor cannot be instantiated. Please make sure you have `torchvision` installed.z Unrecognized video processor in z2. Should have a `video_processor_type` key in its z of z3, or one of the following `model_type` keys in its z: z, c              3       K   | ]  }|  y w)N ).0cs     rA   	<genexpr>z5AutoVideoProcessor.from_pretrained.<locals>.<genexpr>o  s     @jq@js   )rP   rQ   rR   rS   getrT   r   get_video_processor_dictreplacer   r:   
isinstancer   r   from_pretrainedr6   r;   rm   rB   typer8   r
   r	   register_for_auto_class	from_dictr   r   join)clsrC   inputsrZ   rL   ri   rj   config_dict_video_processor_classvideo_processor_auto_mapimage_processor_classvideo_processor_class_inferredimage_processor_auto_maphas_remote_codehas_local_code	class_refs                    rA   r|   z"AutoVideoProcessor.from_pretrained   sF   R  $4d;%MM E zz'". l  -F7OHd+"JJ':DA#|+DDEbmflmQ +0F M#' ;??:r#BB'2:'>?S'T$ !(-E-M$/OO4JD$Q!$01F1N1NO_aq1r. 25R5Y5Y5[[,J)#{z2'FF+6z+BCW+X(+C+K+KL\^n+o( !(-E-Mf&67#331EVZ` %,F4JD$Q!vz*/Cv/V+1??;O+P( ,$CDY$Z!2$>.d:ed6lNe>e5<no
 00I$A)Mj$unt$u!

?D1A!99;2(22;I&II".2(22;I&II&\44$;DL$I!$0<,<<=Zn]cngmnn u  ./L.M N11E0Fd;- X((3}Btyy@jLi@j7j6km
 	
rg   c                 4    t         j                  | ||       y)a7  
        Register a new video processor for this class.

        Args:
            config_class ([`PretrainedConfig`]):
                The configuration corresponding to the model to register.
            video_processor_class ([`BaseVideoProcessor`]):
                The video processor to register.
        )exist_okN)r8   register)config_classr   r   s      rA   r   zAutoVideoProcessor.registerr  s     	 ((7LW_(`rg   N)F)r1   
__module____qualname____doc__rf   classmethodr   r   r|   staticmethodr   rt   rg   rA   rb   rb      sM    
 &'DEW
 F W
r  a arg   rb   r8   )NFNNNNF)4r   r4   rX   osrQ   collectionsr   typingr   r   r   configuration_utilsr   dynamic_module_utilsr	   r
   utilsr   r   r   r   r   utils.import_utilsr   video_processing_utilsr   auto_factoryr   configuration_autor   r   r   r   
get_loggerr1   rU   r   strtuple__annotations__r3   
model_typevideo_processorsfast_video_processor_classr8   rB   PathLikebooldictr]   rb   __all__rt   rg   rA   <module>r      s       	  # 1 1 4 \ f f * 8 *  
		H	%  \g[h!;sE(3-RU:V4W/W#Xh$/	
%!" %B$G$G$I K J !1 $%%)"0J!*-K ++?A^_  4 48 &*(,(,""a!#(bkk)9#:a!c2;;./0a! a! d^	a!
 d38n%a! E$)$%a! sma! a!H 
,-xa xa .xav %&:
;rg   