
    rh
^                     ,   d Z ddlmZmZ ddlZddlmZmZm	Z	m
Z
 ddlmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZm Z  dd	l!m"Z"  e       rddl#Z# e       rddl$Z$ e jJ                  e&      Z' e"d
       G d de             Z(dgZ)y)zImage processor class for Beit.    )OptionalUnionN   )INIT_SERVICE_KWARGSBaseImageProcessorBatchFeatureget_size_dict)resizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_torch_availableis_torch_tensoris_vision_availablelogging)requires)vision)backendsc            %       f    e Zd ZdZdgZ ee      ddej                  ddddddddfde	d	e
eeef      d
ede	de
eeef      deeef   de	de	de
eeee   f      de
eeee   f      de	ddf fd       Zej                  ddfdej&                  d	eeef   d
ede
eeef      de
eeef      dej&                  fdZdedej&                  fdZ	 	 	 	 	 	 	 	 	 	 	 	 d&dede
e	   de
e	   d	e
eeef      d
ede
e	   de
eeef      de
e	   de
e   de
e	   de
eeee   f      de
eeee   f      de
eeef      fdZ	 	 	 	 	 	 	 	 	 	 	 	 d&dede
e	   d	e
eeef      d
ede
e	   de
eeef      de
e	   de
e   de
e	   de
eeee   f      de
eeee   f      de
eeef      de
eeef      dej&                  fdZ	 	 	 	 	 	 	 d'dede
e	   d	e
eeef      d
ede
e	   de
eeef      de
e	   de
eeef      fdZd( fd	Z e       dddddddddddddej8                  dfd ed!e
e   de
e	   d	e
eeef      d
ede
e	   de
eeef      de
e	   de
e   de
e	   de
eeee   f      de
eeee   f      de
e	   d"e
eeef      dede
eeef      dej>                  j>                  f"d#       Z d(d$e
ee!      fd%Z" xZ#S ))BeitImageProcessoraK  
    Constructs a BEiT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
            is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
            `preprocess` method.
        crop_size (`dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
            Can be overridden by the `crop_size` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            The mean to use if normalizing the image. This is a float or list of floats of length of the number of
            channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
            number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_reduce_labels (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
            used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
            background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
            `preprocess` method.
    pixel_values)extraTNgp?F	do_resizesizeresampledo_center_crop	crop_sizerescale_factor
do_rescaledo_normalize
image_mean	image_stddo_reduce_labelsreturnc                 2   t        |   di | ||nddd}t        |      }||nddd}t        |d      }|| _        || _        || _        || _        || _        || _        || _	        || _
        |	|	nt        | _        |
|
nt        | _        || _        y )N   )heightwidth   r(   )
param_name )super__init__r	   r$   r%   r&   r'   r(   r*   r)   r+   r   r,   r   r-   r.   )selfr$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   kwargs	__class__s                /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/beit/image_processing_beit.pyr8   zBeitImageProcessor.__init__g   s      	"6"'tc-JT"!*!6IsUX<Y	!)D	"	 ,"$,((2(>*DZ&/&;AV 0    imagedata_formatinput_data_formatc                     t        |dd      }d|vsd|vrt        d|j                                t        |f|d   |d   f|||d|S )a  
        Resize an image to (size["height"], size["width"]).

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Tr%   default_to_squarer5   r2   r3   z@The `size` argument must contain `height` and `width` keys. Got )r%   r&   r?   r@   )r	   
ValueErrorkeysr
   )r9   r>   r%   r&   r?   r@   r:   s          r<   r
   zBeitImageProcessor.resize   sw    0 TTfM47$#6_`d`i`i`k_lmnn
x.$w-0#/
 
 	
r=   labelc                 F    t        |      }d||dk(  <   |dz
  }d||dk(  <   |S )N   r         )r   )r9   rF   s     r<   reduce_labelzBeitImageProcessor.reduce_label   s6    u%eqj	!eslr=   c                     |r| j                  |      }|r| j                  ||||      }|r| j                  |||      }|r| j                  ||	|      }|
r| j	                  ||||      }|S )N)r>   r%   r&   r@   )r>   r%   r@   )r>   scaler@   )r>   meanstdr@   )rK   r
   center_croprescale	normalize)r9   r>   r.   r$   r%   r&   r'   r(   r*   r)   r+   r,   r-   r@   s                 r<   _preprocesszBeitImageProcessor._preprocess   s      %%e,EKKe$]nKoE$$5yTe$fELLuNVgLhENNZYbsNtEr=   c                     t        |      }|r t        |      rt        j                  d       |t	        |      }| j                  |d||||||||	|
||      }|t        |||      }|S )zPreprocesses a single image.zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.F)r.   r$   r%   r&   r'   r(   r*   r)   r+   r,   r-   r@   )input_channel_dim)r   r   loggerwarning_oncer   rS   r   )r9   r>   r$   r%   r&   r'   r(   r*   r)   r+   r,   r-   r?   r@   s                 r<   _preprocess_imagez$BeitImageProcessor._preprocess_image   s    $ u%/%0s $ >u E  ")!)%!/ ! 
 "/{VghEr=   segmentation_mapc	                 N   t        |      }|j                  dk(  r|d   }d}	t        j                  }nd}	|t	        |d      }| j                  |||||||ddt        j                  
      }|	rt        j                  |d	      }|j                  t        j                        }|S )
z'Preprocesses a single segmentation map.   )N.TFrI   )num_channels)
r>   r.   r$   r&   r%   r'   r(   r+   r*   r@   r   )axis)
r   ndimr   FIRSTr   rS   npsqueezeastypeint64)
r9   rY   r$   r%   r&   r'   r(   r.   r@   added_dimensions
             r<   _preprocess_segmentation_mapz/BeitImageProcessor._preprocess_segmentation_map  s     **:;  A%/	:"O 0 6 6#O ($BCSbc$d!++"-).44 , 
 !zz*:C+22288<r=   c                 (    t        |   |fd|i|S )Nsegmentation_maps)r7   __call__)r9   imagesrg   r:   r;   s       r<   rh   zBeitImageProcessor.__call__+  s      wV:KVvVVr=   ri   rg   return_tensorsc                 8   ||n| j                   }||n| j                  }t        |dd      }||n| j                  }||n| j                  }||n| j
                  }t        |dd      }||n| j                  }|	|	n| j                  }	|
|
n| j                  }
||n| j                  }||n| j                  }||n| j                  }t        |      }|t        |d      }|t        |      st        d      t        |      st        d      t        ||	|
|||||||	
       |D cg c]   }| j!                  |||||
|||	|||||
      " }}d|i}|*|D cg c]  }| j#                  |||||||       }}||d<   t%        ||      S c c}w c c}w )aI  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            segmentation_maps (`ImageInput`, *optional*)
                Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
                padded with zeros and then cropped
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
                Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
                is used for background, and background itself is not included in all classes of a dataset (e.g.
                ADE20k). The background label will be replaced by 255.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Tr%   rB   r(   r[   )expected_ndimszwInvalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r*   r)   r+   r,   r-   r'   r(   r$   r%   r&   )r>   r$   r'   r*   r+   r&   r%   r)   r(   r,   r-   r?   r@   r"   )rY   r.   r$   r&   r%   r'   r(   labels)datatensor_type)r$   r%   r	   r&   r'   r(   r*   r)   r+   r,   r-   r.   r   r   rD   r   rX   re   r   )r9   ri   rg   r$   r%   r&   r'   r(   r*   r)   r+   r,   r-   r.   rj   r?   r@   imgrn   rY   s                       r<   
preprocesszBeitImageProcessor.preprocess0  s4   V "+!6IDNN	'tTYYTTfM'38+9+E4K^K^!*!6IDNN	!)tP[\	#-#9Zt
+9+E4K^K^'3'?|TEVEV#-#9Zt
!*!6IDNN	/?/K+QUQfQf$V,( 34EVW X(>O1P:  F#: 
 	&!)%!)	
: !
   ""#-%)!-#%#'"3 # 
 
& '( ):! % 11%5%5'%#1' 2 ! ! /DN>BBI
,!s   .%FFtarget_sizesc                 &   |j                   }|t        |      t        |      k7  rt        d      t        |      r|j	                         }g }t        t        |            D ]k  }t        j                  j                  j                  ||   j                  d      ||   dd      }|d   j                  d      }|j                  |       m |S |j                  d      }t        |j                  d         D cg c]  }||   	 }}|S c c}w )a6  
        Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

        Args:
            outputs ([`BeitForSemanticSegmentation`]):
                Raw outputs of the model.
            target_sizes (`list[Tuple]` of length `batch_size`, *optional*):
                List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
                predictions will not be resized.

        Returns:
            semantic_segmentation: `list[torch.Tensor]` of length `batch_size`, where each item is a semantic
            segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
            specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
        zTMake sure that you pass in as many target sizes as the batch dimension of the logitsr   )dimbilinearF)r%   modealign_cornersrI   )logitslenrD   r   numpyrangetorchnn
functionalinterpolate	unsqueezeargmaxappendshape)	r9   outputsrr   rx   semantic_segmentationidxresized_logitssemantic_mapis	            r<   "post_process_semantic_segmentationz5BeitImageProcessor.post_process_semantic_segmentation  s(   "  #6{c,// j  |,+113$&!S[) ;!&!4!4!@!@3K))a)0|C7Hzin "A "  .a077A7>%,,\:; %$ %+MMaM$8!GLMbMhMhijMkGl$m!%:1%=$m!$m$$ %ns   >D)NNNNNNNNNNNN)NNNNNNN)N)$__name__
__module____qualname____doc__model_input_namesr   r   r   BICUBICboolr   dictstrintr   floatlistr8   r`   ndarrayr   r
   r   rK   rS   rX   re   rh   r_   r   PILImagerq   tupler   __classcell__)r;   s   @r<   r!   r!   9   sM   (T (($+>? )-'9'A'A#.2,3!:>9=!&11 tCH~&1 %	1
 1 DcN+1 c5j)1 1 1 U5$u+#5671 E%e"4561 1 
1 @1H (:'A'A>BDH"
zz"
 38n"
 %	"

 eC)9$9:;"
 $E#/?*?$@A"
 
"
H*   ,0$()-'+)-.2%)*.'+:>9=DH #4. D>	
 tCH~& % ! DcN+ TN ! tn U5$u+#567 E%e"456 $E#/?*?$@AH %))-'+)-.2%)*.'+:>9=>BDH++ D>+ tCH~&	+
 %+ !+ DcN++ TN+ !+ tn+ U5$u+#567+ E%e"456+ eC)9$9:;+ $E#/?*?$@A+ 
+` %))-'+)-.2+/DH' $'  D>'  tCH~&	' 
 %'  !'  DcN+'  #4.'  $E#/?*?$@A' RW
 %& 37$()-'+)-.2%)*.'+:>9=+/;?(8(>(>DH#YCYC $J/YC D>	YC
 tCH~&YC %YC !YC DcN+YC TNYC !YC tnYC U5$u+#567YC E%e"456YC #4.YC !sJ!78YC  &!YC" $E#/?*?$@A#YC$ 
%YC 'YCv)%QUV[Q\H] )%r=   r!   )*r   typingr   r   rz   r`   image_processing_utilsr   r   r   r	   image_transformsr
   r   image_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   r   r   utils.import_utilsr   r   r|   
get_loggerr   rV   r!   __all__r6   r=   r<   <module>r      s    & "  j j C     +  
		H	% 
;{%+ {%  {%|  
 r=   