
    rh                     `    d Z ddlmZ ddlmZ  ej
                  e      Z G d de      ZdgZ	y)zBitNet model configuration   )PretrainedConfig)loggingc                   R     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )BitNetConfiga  
    This is the configuration class to store the configuration of a [`BitNetModel`]. It is used to instantiate an BitNet
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of
    BitNet b1.58 2B4T [microsoft/bitnet-b1.58-2B-4T](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the BitNet model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BitNetModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 6912):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 30):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 20):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 5):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 128000):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 128001):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 500000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import BitNetModel, BitNetConfig

    >>> # Initializing a BitNet style configuration
    >>> configuration = BitNetConfig()

    >>> # Initializing a model from the BitNet style configuration
    >>> model = BitNetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```bitnetpast_key_valuesc                     || _         || _        || _        || _        || _        || _        ||}|| _        || _        |	| _        |
| _	        || _
        || _        || _        || _        t        | <  d||||d| y )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r
   r   r   r   r   r   r   kwargs	__class__s                       /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/bitnet/configuration_bitnet.pyr   zBitNetConfig.__init__`   s    , %'>$&!2!2#6  &"5#6 $!2("$,!2 	
%%% 3		

 	
    )i  i 
  i            relu2i   g{Gz?gh㈵>TNi  i Fg    AFg        )__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer   __classcell__)r!   s   @r"   r   r      s\    CJ J#4"5  $!'0
 0
r#   r   N)
r+   configuration_utilsr   utilsr   
get_loggerr(   loggerr   __all__r   r#   r"   <module>r4      s>    ! 3  
		H	%y
# y
x 
r#   