
    rh	                         d Z ddlmZmZ ddlmZ ddlmZmZm	Z	 ddl
mZmZmZ  G d ded	
      Z G d de      ZdgZy)z
Processor class for Blip.
    )OptionalUnion   )
ImageInput)ProcessingKwargsProcessorMixinUnpack)BatchEncodingPreTokenizedInput	TextInputc            
       *    e Zd Zdddddddddd	i dZy)BlipProcessorKwargsTFr   )	add_special_tokenspaddingstridereturn_overflowing_tokensreturn_special_tokens_maskreturn_offsets_mappingreturn_token_type_idsreturn_lengthverbose)text_kwargsimages_kwargsN)__name__
__module____qualname__	_defaults     {/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/blip/processing_blip.pyr   r      s0     #').*/&+%*"

 Ir   r   F)totalc            
            e Zd ZdZddgZdZdZ fdZ	 	 	 	 ddede	e
eee   eef      d	ee   d
efdZd Zd Zed        Z xZS )BlipProcessora]  
    Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.

    [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
    docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.

    Args:
        image_processor (`BlipImageProcessor`):
            An instance of [`BlipImageProcessor`]. The image processor is a required input.
        tokenizer (`BertTokenizerFast`):
            An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
    image_processor	tokenizer)BlipImageProcessorBlipImageProcessorFast)BertTokenizerBertTokenizerFastc                 V    d|_         t        | 	  ||       | j                  | _        y )NF)r   super__init__r$   current_processor)selfr$   r%   kwargs	__class__s       r    r,   zBlipProcessor.__init__=   s(    */	')4!%!5!5r   imagestextr/   returnc                    ||t        d      d} | j                  t        fd| j                  j                  i|}| | j                  |fi |d   }|+ | j
                  |fi |d   }||j                  |       |S |S )ae  
        This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
        [`BertTokenizerFast.__call__`] to prepare text for the model.

        Please refer to the docstring of the above two methods for more information.
        Args:
            images (`ImageInput`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `list[TextInput]`, `list[PreTokenizedInput]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Nz*You have to specify either images or text.tokenizer_init_kwargsr   r   )
ValueError_merge_kwargsr   r%   init_kwargsr$   update)	r.   r1   r2   audiovideosr/   text_encodingoutput_kwargsencoding_image_processors	            r    __call__zBlipProcessor.__call__B   s    8 >dlIJJ +**
"&.."<"<
 

 *DNN4P=3OPM';t';';F'emTcFd'e$((//>++r   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r%   batch_decoder.   argsr/   s      r    rA   zBlipProcessor.batch_decodeu   s     
 +t~~**D;F;;r   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r%   decoderB   s      r    rE   zBlipProcessor.decode|   s     
 %t~~$$d5f55r   c                     | j                   j                  }| j                  j                  }t        t        j                  ||z               S )N)r%   model_input_namesr$   listdictfromkeys)r.   tokenizer_input_namesimage_processor_input_namess      r    rG   zBlipProcessor.model_input_names   s?     $ @ @&*&:&:&L&L#DMM"7:U"UVWWr   )NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classr,   r   r   r   strrH   r   r   r	   r   r
   r?   rA   rE   propertyrG   __classcell__)r0   s   @r    r#   r#   +   s     $[1JL<O6 "NR11 uS$s)Y8IIJK1 ,-1 
1f<6 X Xr   r#   N)rM   typingr   r   image_utilsr   processing_utilsr   r   r	   tokenization_utils_baser
   r   r   r   r#   __all__r   r   r    <module>rY      sH    # % H H R R*% "\XN \X~ 
r   