#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/deepseek_vl/modular_deepseek_vl.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_deepseek_vl.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Union

from ...cache_utils import Cache
from ...generation import GenerationMixin
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
    TransformersKwargs,
    auto_docstring,
    can_return_tuple,
    is_torch_available,
)
from ..auto import AutoModel
from .configuration_deepseek_vl import DeepseekVLConfig


if is_torch_available():
    import torch
    import torch.nn as nn


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for DeepseekVL model's outputs that may also contain a past key/values (to speed up sequential decoding).
    """
)
class DeepseekVLBaseModelOutputWithPast(ModelOutput):
    r"""
    last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
        Sequence of hidden-states at the output of the last layer of the model.

        If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
        hidden_size)` is output.
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
        `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
        encoder_sequence_length, embed_size_per_head)`.

        Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
        `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
        input) to speed up sequential decoding.
    image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
        Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
        sequence_length, hidden_size)`.

        image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[tuple[torch.FloatTensor]] = None


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for DeepseekVL causal language model (or autoregressive) outputs.
    """
)
class DeepseekVLCausalLMOutputWithPast(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
        Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
        sequence_length, hidden_size)`.

        image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[list[torch.FloatTensor]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[tuple[torch.FloatTensor]] = None


class DeepseekVLAligner(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        in_features = config.vision_config.hidden_size
        out_features = config.text_config.hidden_size

        self.linear1 = nn.Linear(in_features, out_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(out_features, out_features)

    def forward(self, vision_encodings: torch.Tensor) -> torch.Tensor:
        x = self.linear1(vision_encodings)
        x = self.activation(x)
        x = self.linear2(x)
        return x


@auto_docstring
class DeepseekVLPreTrainedModel(PreTrainedModel):
    config: DeepseekVLConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlamaDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values", "causal_mask"]
    _supports_flash_attn = True
    _supports_sdpa = True

    _can_compile_fullgraph = True
    _supports_param_buffer_assignment = False

    def _init_weights(self, module):
        """Initialize the weights"""
        # Required only for Linear layer in DeepseekVLAligner
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.text_config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()


@auto_docstring
class DeepseekVLModel(DeepseekVLPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.vision_model = AutoModel.from_config(config.vision_config)
        self.aligner = DeepseekVLAligner(config)

        self.language_model = AutoModel.from_config(config=config.text_config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing.
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_image_features(self, pixel_values):
        image_embeds = self.vision_model(pixel_values)
        image_embeds = self.aligner(image_embeds.last_hidden_state)
        return image_embeds

    def get_placeholder_mask(
        self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor
    ):
        """
        Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
        equal to the length of multimodal features. If the lengths are different, an error is raised.
        """
        if input_ids is None:
            special_image_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_image_mask = special_image_mask.all(-1)
        else:
            special_image_mask = input_ids == self.config.image_token_id

        n_image_tokens = special_image_mask.sum()
        special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if inputs_embeds[special_image_mask].numel() != image_features.numel():
            n_image_features = image_features.shape[0] * image_features.shape[1]
            raise ValueError(
                f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
            )
        return special_image_mask

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs,
    ):
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if pixel_values is not None:
            image_embeds = self.get_image_features(pixel_values)
            image_features = image_embeds.reshape(-1, inputs_embeds.shape[-1])
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            image_attention_mask = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_features
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_attention_mask, image_features)

        lm_output = self.language_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        return DeepseekVLBaseModelOutputWithPast(
            last_hidden_state=lm_output.last_hidden_state,
            past_key_values=lm_output.past_key_values,
            hidden_states=lm_output.hidden_states,
            attentions=lm_output.attentions,
            image_hidden_states=image_embeds if pixel_values is not None else None,
        )


class DeepseekVLForConditionalGeneration(DeepseekVLPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["model.language_model.embed_tokens.weight", "lm_head.weight"]
    _can_compile_fullgraph = True

    def __init__(self, config: DeepseekVLConfig):
        super().__init__(config)
        self.config = config
        self.model = DeepseekVLModel(config)
        self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)

        # Initialize weights and apply final processing.
        self.post_init()

    def get_input_embeddings(self):
        return self.model.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.language_model.set_input_embeddings(value)

    def prepare_embeddings_for_image_generation(self) -> torch.Tensor:
        raise AttributeError("Not needed for DeepseekVL")

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        """
        outputs = self.model(
            input_ids=input_ids,
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(
                logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
            )

        return DeepseekVLCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        pixel_values=None,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- extra custom processing

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values

        return model_inputs


__all__ = ["DeepseekVLPreTrainedModel", "DeepseekVLModel", "DeepseekVLForConditionalGeneration"]
