
    rh                     $   d Z ddlZddlmZ ddlmZmZmZ ddl	Z	ddl
Z	ddl	mZ ddlmZmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZ ddlmZmZ ddlmZmZ ddlm Z m!Z!m"Z"m#Z# ddl$m%Z%  e"jL                  e'      Z( G d dejR                        Z* G d dejR                        Z+	 d>dejR                  de	jX                  de	jX                  de	jX                  dee	jX                     de-de-fdZ. G d dejR                        Z/ G d dejR                        Z0 G d  d!ejR                        Z1 G d" d#ejR                        Z2 G d$ d%ejR                        Z3 G d& d'e      Z4 G d( d)ejR                        Z5e! G d* d+e             Z6e! G d, d-e6             Z7 G d. d/ejR                        Z8 e!d01       G d2 d3e6             Z9 e!d41       G d5 d6e6             Z:e e!d71       G d8 d9e                     Z; e!d:1       G d; d<e6             Z<g d=Z=y)?zPyTorch DeiT model.    N)	dataclass)CallableOptionalUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)GradientCheckpointingLayer)BaseModelOutputBaseModelOutputWithPoolingImageClassifierOutputMaskedImageModelingOutput)ALL_ATTENTION_FUNCTIONSPreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)ModelOutputauto_docstringlogging	torch_int   )
DeiTConfigc            	            e Zd ZdZddededdf fdZdej                  de	d	e	dej                  fd
Z
	 	 ddej                  deej                     dedej                  fdZ xZS )DeiTEmbeddingszv
    Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
    configuse_mask_tokenreturnNc                    t         |           t        j                  t	        j
                  dd|j                              | _        t        j                  t	        j
                  dd|j                              | _        |r4t        j                  t	        j
                  dd|j                              nd | _	        t        |      | _        | j                  j                  }t        j                  t	        j
                  d|dz   |j                              | _        t        j                  |j                        | _        |j"                  | _        y )Nr      )super__init__r   	Parametertorchzeroshidden_size	cls_tokendistillation_token
mask_tokenDeiTPatchEmbeddingspatch_embeddingsnum_patchesposition_embeddingsDropouthidden_dropout_probdropout
patch_size)selfr   r   r.   	__class__s       y/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/deit/modeling_deit.pyr$   zDeiTEmbeddings.__init__0   s    ekk!Q8J8J&KL"$,,u{{1aASAS/T"UQ_",,u{{1a9K9K'LMei 3F ;++77#%<<A{QPVPbPb0c#d zz&"<"<= ++    
embeddingsheightwidthc                    |j                   d   dz
  }| j                  j                   d   dz
  }t        j                  j	                         s||k(  r||k(  r| j                  S | j                  ddddf   }| j                  ddddf   }|j                   d   }|| j
                  z  }	|| j
                  z  }
t        |dz        }|j                  d|||      }|j                  dddd      }t        j                  j                  ||	|
fdd	
      }|j                  dddd      j                  dd|      }t        j                  ||fd      S )a  
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing and 2 class embeddings.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        r   r"   N      ?r   r   bicubicF)sizemodealign_cornersdim)shaper/   r&   jit
is_tracingr3   r   reshapepermuter   
functionalinterpolateviewcat)r4   r8   r9   r:   r.   num_positionsclass_and_dist_pos_embedpatch_pos_embedrC   
new_height	new_widthsqrt_num_positionss               r6   interpolate_pos_encodingz'DeiTEmbeddings.interpolate_pos_encoding<   sb    !&&q)A-0066q9A= yy##%+*F6UZ?+++#'#;#;ArrE#B 221ab59r"t.
T__,	&}c'9:)11!5GI[]`a)11!Q1=--33i(	 4 
 *11!Q1=BB1b#Nyy2OD!LLr7   pixel_valuesbool_masked_posrS   c                 "   |j                   \  }}}}| j                  |      }|j                         \  }}	}|K| j                  j	                  ||	d      }
|j                  d      j                  |
      }|d|z
  z  |
|z  z   }| j                  j	                  |dd      }| j                  j	                  |dd      }t        j                  |||fd      }| j                  }|r| j                  |||      }||z   }| j                  |      }|S )Nr<         ?r   rB   )rD   r-   r?   r+   expand	unsqueezetype_asr)   r*   r&   rL   r/   rS   r2   )r4   rT   rU   rS   _r9   r:   r8   
batch_size
seq_lengthmask_tokensmask
cls_tokensdistillation_tokensposition_embeddings                  r6   forwardzDeiTEmbeddings.forwardd   s    +001fe**<8
$.OO$5!
J&//00ZLK",,R088ED#sTz2[45GGJ^^**:r2>
"55<<ZRPYY
,?LRST
!55#!%!>!>z6SX!Y"44
\\*-
r7   )FNF)__name__
__module____qualname____doc__r   boolr$   r&   TensorintrS   r   
BoolTensorrc   __classcell__r5   s   @r6   r   r   +   s    
,z 
,4 
,D 
,&M5<< &M &MUX &M]b]i]i &MV 7;).	ll "%"2"23 #'	
 
r7   r   c                   Z     e Zd ZdZ fdZdej                  dej                  fdZ xZS )r,   z
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    c                    t         |           |j                  |j                  }}|j                  |j
                  }}t        |t        j                  j                        r|n||f}t        |t        j                  j                        r|n||f}|d   |d   z  |d   |d   z  z  }|| _        || _        || _        || _
        t        j                  ||||      | _        y )Nr   r   )kernel_sizestride)r#   r$   
image_sizer3   num_channelsr(   
isinstancecollectionsabcIterabler.   r   Conv2d
projection)r4   r   rs   r3   rt   r(   r.   r5   s          r6   r$   zDeiTPatchEmbeddings.__init__   s    !'!2!2F4E4EJ
$*$7$79K9Kk#-j+//:R:R#SZZdfpYq
#-j+//:R:R#SZZdfpYq
!!}
15*Q-:VW=:XY$$(&))L+:^hir7   rT   r    c                     |j                   \  }}}}|| j                  k7  rt        d      | j                  |      j	                  d      j                  dd      }|S )NzeMake sure that the channel dimension of the pixel values match with the one set in the configuration.r"   r   )rD   rt   
ValueErrorrz   flatten	transpose)r4   rT   r\   rt   r9   r:   xs          r6   rc   zDeiTPatchEmbeddings.forward   sa    2>2D2D/
L&%4,,,w  OOL)11!4>>q!Dr7   )	re   rf   rg   rh   r$   r&   rj   rc   rm   rn   s   @r6   r,   r,      s)    jELL U\\ r7   r,   modulequerykeyvalueattention_maskscalingr2   c                    t        j                  ||j                  dd            |z  }t        j                  j                  |dt         j                        j                  |j                        }t        j                  j                  ||| j                        }|||z  }t        j                  ||      }	|	j                  dd      j                         }	|	|fS )Nr<   )rC   dtype)ptrainingr   r"   )r&   matmulr~   r   rI   softmaxfloat32tor   r2   r   
contiguous)
r   r   r   r   r   r   r2   kwargsattn_weightsattn_outputs
             r6   eager_attention_forwardr      s     <<s}}R'<=GL ==((2U]](SVVW\WbWbcL ==((6??([L !#n4,,|U3K''1-88:K$$r7   c            
            e Zd Zdeddf fdZ	 	 ddeej                     dede	e
ej                  ej                  f   e
ej                     f   fdZ xZS )	DeiTSelfAttentionr   r    Nc                 2   t         |           |j                  |j                  z  dk7  r2t	        |d      s&t        d|j                   d|j                   d      || _        |j                  | _        t        |j                  |j                  z        | _        | j                  | j                  z  | _	        |j                  | _        | j                  dz  | _        d| _        t        j                  |j                  | j                  |j                         | _        t        j                  |j                  | j                  |j                         | _        t        j                  |j                  | j                  |j                         | _        y )	Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .g      F)bias)r#   r$   r(   num_attention_headshasattrr|   r   rk   attention_head_sizeall_head_sizeattention_probs_dropout_probdropout_probr   	is_causalr   Linearqkv_biasr   r   r   r4   r   r5   s     r6   r$   zDeiTSelfAttention.__init__   sF    : ::a?PVXhHi"6#5#5"6 7334A7 
 #)#=#= #&v'9'9F<V<V'V#W !558P8PP"??//5YYv1143E3EFOO\
99V//1C1C&//ZYYv1143E3EFOO\
r7   	head_maskoutput_attentionsc           
         |j                   \  }}}| j                  |      j                  |d| j                  | j                        j                  dd      }| j                  |      j                  |d| j                  | j                        j                  dd      }| j                  |      j                  |d| j                  | j                        j                  dd      }	t        }
| j                  j                  dk7  rN| j                  j                  dk(  r|rt        j                  d       nt        | j                  j                     }
 |
| |	|||| j                  | j                  | j                   sdn| j"                        \  }}|j%                         d d	 | j&                  fz   }|j)                  |      }|r||f}|S |f}|S )
Nr<   r   r"   eagersdpaz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )r   r   r2   r   )rD   r   rK   r   r   r~   r   r   r   r   _attn_implementationloggerwarning_oncer   r   r   r   r   r?   r   rG   )r4   hidden_statesr   r   r\   r]   r[   	key_layervalue_layerquery_layerattention_interfacecontext_layerattention_probsnew_context_layer_shapeoutputss                  r6   rc   zDeiTSelfAttention.forward   s    %2$7$7!
JHH]#T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 )@;;++w6{{//69>O##L
 '>dkk>^>^&_#)<nnLL#}}C$2C2C	*
& #0"4"4"6s";t?Q?Q>S"S%--.EF6G=/2 O\M]r7   rd   )re   rf   rg   r   r$   r   r&   rj   ri   r   tuplerc   rm   rn   s   @r6   r   r      sr    ]z ]d ]. -1"'	1 ELL)1  	1
 
uU\\5<</0%2EE	F1r7   r   c                   |     e Zd ZdZdeddf fdZdej                  dej                  dej                  fdZ xZ	S )	DeiTSelfOutputz
    The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    r   r    Nc                     t         |           t        j                  |j                  |j                        | _        t        j                  |j                        | _        y N)	r#   r$   r   r   r(   denser0   r1   r2   r   s     r6   r$   zDeiTSelfOutput.__init__  sB    YYv1163E3EF
zz&"<"<=r7   r   input_tensorc                 J    | j                  |      }| j                  |      }|S r   r   r2   r4   r   r   s      r6   rc   zDeiTSelfOutput.forward  s$    

=1]3r7   )
re   rf   rg   rh   r   r$   r&   rj   rc   rm   rn   s   @r6   r   r     sD    
>z >d >
U\\  RWR^R^ r7   r   c                        e Zd Zdeddf fdZdee   ddfdZ	 	 ddej                  de
ej                     d	edeeej                  ej                  f   eej                     f   fd
Z xZS )DeiTAttentionr   r    Nc                     t         |           t        |      | _        t	        |      | _        t               | _        y r   )r#   r$   r   	attentionr   outputsetpruned_headsr   s     r6   r$   zDeiTAttention.__init__"  s0    *62$V,Er7   headsc                 >   t        |      dk(  ry t        || j                  j                  | j                  j                  | j
                        \  }}t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _	        t        | j                  j                  |d      | j                  _        | j                  j                  t        |      z
  | j                  _        | j                  j                  | j                  j                  z  | j                  _        | j
                  j                  |      | _        y )Nr   r   rB   )lenr   r   r   r   r   r   r   r   r   r   r   r   union)r4   r   indexs      r6   prune_headszDeiTAttention.prune_heads(  s   u:?74>>55t~~7Y7Y[_[l[l
u
  2$..2F2FN/0B0BEJ1$..2F2FN.t{{/@/@%QO .2^^-O-ORUV[R\-\*'+~~'I'IDNNLnLn'n$ --33E:r7   r   r   r   c                 h    | j                  |||      }| j                  |d   |      }|f|dd  z   }|S )Nr   r   )r   r   )r4   r   r   r   self_outputsattention_outputr   s          r6   rc   zDeiTAttention.forward:  sE     ~~mY@QR;;|AF#%QR(88r7   rd   )re   rf   rg   r   r$   r   rk   r   r&   rj   r   ri   r   r   rc   rm   rn   s   @r6   r   r   !  s    "z "d ";S ;d ;* -1"'	|| ELL)  	
 
uU\\5<</0%2EE	Fr7   r   c                   `     e Zd Zdeddf fdZdej                  dej                  fdZ xZS )DeiTIntermediater   r    Nc                    t         |           t        j                  |j                  |j
                        | _        t        |j                  t              rt        |j                     | _        y |j                  | _        y r   )r#   r$   r   r   r(   intermediate_sizer   ru   
hidden_actstrr   intermediate_act_fnr   s     r6   r$   zDeiTIntermediate.__init__J  s]    YYv1163K3KL
f''-'-f.?.?'@D$'-'8'8D$r7   r   c                 J    | j                  |      }| j                  |      }|S r   )r   r   )r4   r   s     r6   rc   zDeiTIntermediate.forwardR  s&    

=100?r7   	re   rf   rg   r   r$   r&   rj   rc   rm   rn   s   @r6   r   r   I  s1    9z 9d 9U\\ ell r7   r   c                   x     e Zd Zdeddf fdZdej                  dej                  dej                  fdZ xZS )
DeiTOutputr   r    Nc                     t         |           t        j                  |j                  |j
                        | _        t        j                  |j                        | _	        y r   )
r#   r$   r   r   r   r(   r   r0   r1   r2   r   s     r6   r$   zDeiTOutput.__init__[  sB    YYv779K9KL
zz&"<"<=r7   r   r   c                 T    | j                  |      }| j                  |      }||z   }|S r   r   r   s      r6   rc   zDeiTOutput.forward`  s.    

=1]3%4r7   r   rn   s   @r6   r   r   Z  s?    >z >d >
U\\  RWR^R^ r7   r   c                        e Zd ZdZdeddf fdZ	 	 d
dej                  deej                     de	de
eej                  ej                  f   eej                     f   fd	Z xZS )	DeiTLayerz?This corresponds to the Block class in the timm implementation.r   r    Nc                 r   t         |           |j                  | _        d| _        t	        |      | _        t        |      | _        t        |      | _	        t        j                  |j                  |j                        | _        t        j                  |j                  |j                        | _        y )Nr   eps)r#   r$   chunk_size_feed_forwardseq_len_dimr   r   r   intermediater   r   r   	LayerNormr(   layer_norm_epslayernorm_beforelayernorm_afterr   s     r6   r$   zDeiTLayer.__init__m  s    '-'E'E$&v.,V4 ( "V-?-?VEZEZ [!||F,>,>FDYDYZr7   r   r   r   c                     | j                  | j                  |      ||      }|d   }|dd  }||z   }| j                  |      }| j                  |      }| j	                  ||      }|f|z   }|S )N)r   r   r   )r   r   r   r   r   )r4   r   r   r   self_attention_outputsr   r   layer_outputs           r6   rc   zDeiTLayer.forwardw  s     "&!!-0/ "0 "

 2!4(, )=8 ++M:((6 {{<?/G+r7   rd   )re   rf   rg   rh   r   r$   r&   rj   r   ri   r   r   rc   rm   rn   s   @r6   r   r   j  s    I[z [d [ -1"'	|| ELL)  	
 
uU\\5<</0%2EE	Fr7   r   c                        e Zd Zdeddf fdZ	 	 	 	 ddej                  deej                     deded	ede	e
ef   fd
Z xZS )DeiTEncoderr   r    Nc                     t         |           || _        t        j                  t        |j                        D cg c]  }t        |       c}      | _        d| _	        y c c}w rd   )
r#   r$   r   r   
ModuleListrangenum_hidden_layersr   layergradient_checkpointing)r4   r   r[   r5   s      r6   r$   zDeiTEncoder.__init__  sN    ]]uVE]E]?^#_!If$5#_`
&+# $`s   A#r   r   r   output_hidden_statesreturn_dictc                    |rdnd }|rdnd }t        | j                        D ]1  \  }}	|r||fz   }|||   nd }
 |	||
|      }|d   }|s)||d   fz   }3 |r||fz   }|st        d |||fD              S t        |||      S )N r   r   c              3   &   K   | ]	  }||  y wr   r   ).0vs     r6   	<genexpr>z&DeiTEncoder.forward.<locals>.<genexpr>  s     mq_`_lms   )last_hidden_stater   
attentions)	enumerater   r   r   )r4   r   r   r   r   r   all_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputss               r6   rc   zDeiTEncoder.forward  s     #7BD$5b4(4 	POA|#$58H$H!.7.CilO(IZ[M)!,M &9]1=M<O&O#	P   1]4D Dm]4EGZ$[mmm++*
 	
r7   )NFFT)re   rf   rg   r   r$   r&   rj   r   ri   r   r   r   rc   rm   rn   s   @r6   r   r     sz    ,z ,d , -1"'%* !
||!
 ELL)!
  	!

 #!
 !
 
uo%	&!
r7   r   c                       e Zd ZU eed<   dZdZdZdgZdZ	dZ
dZdZdeej                  ej                   ej"                  f   ddfd	Zy)
DeiTPreTrainedModelr   deitrT   Tr   r   r    Nc                    t        |t        j                  t        j                  f      rt        j                  j                  |j                  j                  j                  t        j                        d| j                  j                        j                  |j                  j                        |j                  _        |j                  %|j                  j                  j                          yyt        |t        j                         rJ|j                  j                  j                          |j                  j                  j#                  d       yt        |t$              r|j&                  j                  j                          |j(                  j                  j                          |j*                  j                  j                          |j,                  %|j,                  j                  j                          yyy)zInitialize the weightsr   )meanstdNrW   )ru   r   r   ry   inittrunc_normal_weightdatar   r&   r   r   initializer_ranger   r   zero_r   fill_r   r)   r/   r*   r+   )r4   r   s     r6   _init_weightsz!DeiTPreTrainedModel._init_weights  s_   fryy"))45 "$!6!6""%%emm43DKKDaDa "7 "b$$% MM {{&  &&( '-KK""$MM$$S)/!!'')&&++113%%**002  ,!!&&,,. -	 0r7   )re   rf   rg   r   __annotations__base_model_prefixmain_input_namesupports_gradient_checkpointing_no_split_modules_supports_sdpa_supports_flash_attn_supports_flex_attn_supports_attention_backendr   r   r   ry   r   r  r   r7   r6   r  r    sd    $O&*#$N"&/E"))RYY*L$M /RV /r7   r  c                        e Zd Zddedededdf fdZdefdZd Ze		 	 	 	 	 	 	 dd	e
ej                     d
e
ej                     de
ej                     de
e   de
e   de
e   dedeeef   fd       Z xZS )	DeiTModelr   add_pooling_layerr   r    Nc                    t         |   |       || _        t        ||      | _        t        |      | _        t        j                  |j                  |j                        | _        |rt        |      nd| _        | j                          y)z
        add_pooling_layer (bool, *optional*, defaults to `True`):
            Whether to add a pooling layer
        use_mask_token (`bool`, *optional*, defaults to `False`):
            Whether to use a mask token for masked image modeling.
        )r   r   N)r#   r$   r   r   r8   r   encoderr   r   r(   r   	layernorm
DeiTPoolerpooler	post_init)r4   r   r  r   r5   s       r6   r$   zDeiTModel.__init__  sm     	 (O"6*f&8&8f>S>ST,=j(4 	r7   c                 .    | j                   j                  S r   )r8   r-   )r4   s    r6   get_input_embeddingszDeiTModel.get_input_embeddings  s    ///r7   c                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 y)z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        N)itemsr   r   r   r   )r4   heads_to_pruner   r   s       r6   _prune_headszDeiTModel._prune_heads  sE    
 +002 	CLE5LLu%//;;EB	Cr7   rT   rU   r   r   r   r   rS   c                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|t	        d      | j                  || j                   j                        }| j                  j                  j                  j                  j                  }|j                  |k7  r|j                  |      }| j                  |||      }	| j                  |	||||      }
|
d   }| j                  |      }| j                  | j                  |      nd}|s|||fn|f}||
dd z   S t!        |||
j"                  |
j$                        S )z
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        Nz You have to specify pixel_values)rU   rS   )r   r   r   r   r   r   )r   pooler_outputr   r   )r   r   r   use_return_dictr|   get_head_maskr   r8   r-   rz   r  r   r   r   r!  r#  r   r   r   )r4   rT   rU   r   r   r   r   rS   expected_dtypeembedding_outputencoder_outputssequence_outputpooled_outputhead_outputss                 r6   rc   zDeiTModel.forward  s    2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]?@@ &&y$++2O2OP	 99DDKKQQ/'??>:L??/Tl + 
 ,,/!5# ' 
 *!,..98<8OO4UY?L?XO];_n^pL/!""555)-')77&11	
 	
r7   )TFNNNNNNF)re   rf   rg   r   ri   r$   r,   r&  r*  r   r   r&   rj   rl   r   r   r   rc   rm   rn   s   @r6   r  r    s    z d [_ lp &0&9 0C  046:,0,0/3&*).;
u||,;
 "%"2"23;
 ELL)	;

 $D>;
 'tn;
 d^;
 #';
 
u00	1;
 ;
r7   r  c                   *     e Zd Zdef fdZd Z xZS )r"  r   c                     t         |           t        j                  |j                  |j
                        | _        t        |j                     | _	        y r   )
r#   r$   r   r   r(   pooler_output_sizer   r   
pooler_act
activationr   s     r6   r$   zDeiTPooler.__init__B  s>    YYv1163L3LM
 !2!23r7   c                 \    |d d df   }| j                  |      }| j                  |      }|S )Nr   )r   r:  )r4   r   first_token_tensorr3  s       r6   rc   zDeiTPooler.forwardG  s6     +1a40

#566r7   )re   rf   rg   r   r$   rc   rm   rn   s   @r6   r"  r"  A  s    4z 4
r7   r"  ad  
    DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://huggingface.co/papers/2111.09886).

    <Tip>

    Note that we provide a script to pre-train this model on custom data in our [examples
    directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).

    </Tip>
    )custom_introc                        e Zd Zdeddf fdZe	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee
   d	ee
   d
ee
   de
deeef   fd       Z xZS )DeiTForMaskedImageModelingr   r    Nc                 N   t         |   |       t        |dd      | _        t	        j
                  t	        j                  |j                  |j                  dz  |j                  z  d      t	        j                  |j                              | _        | j                          y )NFT)r  r   r"   r   )in_channelsout_channelsrq   )r#   r$   r  r  r   
Sequentialry   r(   encoder_stridert   PixelShuffledecoderr$  r   s     r6   r$   z#DeiTForMaskedImageModeling.__init__]  s     fdS	}}II"..#22A58K8KK
 OOF112
 	r7   rT   rU   r   r   r   r   rS   c           	         ||n| j                   j                  }| j                  |||||||      }|d   }	|	ddddf   }	|	j                  \  }
}}t	        |dz        x}}|	j                  ddd      j                  |
|||      }	| j                  |	      }d}|| j                   j                  | j                   j                  z  }|j                  d||      }|j                  | j                   j                  d      j                  | j                   j                  d      j                  d      j                         }t        j                  j                  ||d	      }||z  j!                         |j!                         d
z   z  | j                   j"                  z  }|s|f|dd z   }||f|z   S |S t%        |||j&                  |j(                        S )a;  
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        Examples:
        ```python
        >>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
        >>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")

        >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
        >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
        >>> # create random boolean mask of shape (batch_size, num_patches)
        >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()

        >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
        >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
        >>> list(reconstructed_pixel_values.shape)
        [1, 3, 224, 224]
        ```N)rU   r   r   r   r   rS   r   r   r<   r=   r"   none)	reductiongh㈵>)lossreconstructionr   r   )r   r-  r  rD   rk   rH   rG   rF  rs   r3   repeat_interleaverY   r   r   rI   l1_losssumrt   r   r   r   )r4   rT   rU   r   r   r   r   rS   r   r2  r\   sequence_lengthrt   r9   r:   reconstructed_pixel_valuesmasked_im_lossr?   r_   reconstruction_lossr   s                        r6   rc   z"DeiTForMaskedImageModeling.forwardn  s   L &1%<k$++B]B]))+/!5#%=  
 "!* *!QrT'24C4I4I1
O\_c122)11!Q:BB:|]cejk &*\\/%B"&;;))T[[-C-CCD-55b$EO11$++2H2H!L""4;;#9#91=1	  #%--"7"7F`lr"7"s1D8==?488:PTCTUX\XcXcXpXppN02WQR[@F3A3M^%.YSYY(5!//))	
 	
r7   r5  )re   rf   rg   r   r$   r   r   r&   rj   rl   ri   r   r   r   rc   rm   rn   s   @r6   r?  r?  P  s    z d "  046:,0,0/3&*).R
u||,R
 "%"2"23R
 ELL)	R

 $D>R
 'tnR
 d^R
 #'R
 
u//	0R
 R
r7   r?  z
    DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
    the [CLS] token) e.g. for ImageNet.
    c                        e Zd Zdeddf fdZe	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee	   d	ee	   d
ee	   de	de
eef   fd       Z xZS )DeiTForImageClassificationr   r    Nc                 .   t         |   |       |j                  | _        t        |d      | _        |j                  dkD  r*t        j                  |j                  |j                        nt        j                         | _	        | j                          y NF)r  r   )r#   r$   
num_labelsr  r  r   r   r(   Identity
classifierr$  r   s     r6   r$   z#DeiTForImageClassification.__init__  ss      ++f>	 OUN_N_bcNc"))F$6$68I8IJikititiv 	r7   rT   r   labelsr   r   r   rS   c                 b   ||n| j                   j                  }| j                  ||||||      }|d   }	| j                  |	dddddf         }
d}||j	                  |
j
                        }| j                   j                  | j                  dk(  rd| j                   _        nl| j                  dkD  rL|j                  t        j                  k(  s|j                  t        j                  k(  rd| j                   _        nd| j                   _        | j                   j                  dk(  rIt               }| j                  dk(  r& ||
j                         |j                               }n ||
|      }n| j                   j                  dk(  r=t               } ||
j                  d| j                        |j                  d            }n,| j                   j                  dk(  rt!               } ||
|      }|s|
f|dd z   }||f|z   S |S t#        ||
|j$                  |j&                  	      S )
aZ  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, DeiTForImageClassification
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> torch.manual_seed(3)  # doctest: +IGNORE_RESULT
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here,
        >>> # so the head will be randomly initialized, hence the predictions will be random
        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
        >>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")

        >>> inputs = image_processor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        Predicted class: Polaroid camera, Polaroid Land camera
        ```Nr   r   r   r   rS   r   r   
regressionsingle_label_classificationmulti_label_classificationr<   )rJ  logitsr   r   )r   r-  r  rY  r   deviceproblem_typerW  r   r&   longrk   r
   squeezer	   rK   r   r   r   r   )r4   rT   r   rZ  r   r   r   rS   r   r2  r`  rJ  loss_fctr   s                 r6   rc   z"DeiTForImageClassification.forward  s   T &1%<k$++B]B]))/!5#%=  
 "!*Aq!9: YYv}}-F{{''/??a'/;DKK,__q(fllejj.HFLL\a\e\eLe/LDKK,/KDKK,{{''<7"9??a'#FNN$4fnn6FGD#FF3D))-JJ+-B @&++b/R))-II,./Y,F)-)9TGf$EvE$!//))	
 	
r7   r5  )re   rf   rg   r   r$   r   r   r&   rj   ri   r   r   r   rc   rm   rn   s   @r6   rT  rT    s    
z 
d 
  04,0)-,0/3&*).Y
u||,Y
 ELL)Y
 &	Y

 $D>Y
 'tnY
 d^Y
 #'Y
 
u++	,Y
 Y
r7   rT  zC
    Output type of [`DeiTForImageClassificationWithTeacher`].
    c                       e Zd ZU dZdZeej                     ed<   dZ	eej                     ed<   dZ
eej                     ed<   dZeeej                        ed<   dZeeej                        ed<   y)+DeiTForImageClassificationWithTeacherOutputaj  
    logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
        Prediction scores as the average of the cls_logits and distillation logits.
    cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
        Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
        class token).
    distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
        Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
        distillation token).
    Nr`  
cls_logitsdistillation_logitsr   r   )re   rf   rg   rh   r`  r   r&   FloatTensorr  rh  ri  r   r   r   r   r7   r6   rg  rg  4  s}    	 +/FHU&&'..2J**+27;%"3"34;8<M8E%"3"345<59Ju00129r7   rg  a  
    DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
    the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.

    .. warning::

           This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
           supported.
    c                        e Zd Zdeddf fdZe	 	 	 	 	 	 ddeej                     deej                     dee	   dee	   d	ee	   d
e	de
eef   fd       Z xZS )%DeiTForImageClassificationWithTeacherr   r    Nc                    t         |   |       |j                  | _        t        |d      | _        |j                  dkD  r*t        j                  |j                  |j                        nt        j                         | _	        |j                  dkD  r*t        j                  |j                  |j                        nt        j                         | _
        | j                          y rV  )r#   r$   rW  r  r  r   r   r(   rX  cls_classifierdistillation_classifierr$  r   s     r6   r$   z.DeiTForImageClassificationWithTeacher.__init__Y  s      ++f>	 AG@Q@QTU@UBIIf((&*;*;<[][f[f[h 	 AG@Q@QTU@UBIIf((&*;*;<[][f[f[h 	$
 	r7   rT   r   r   r   r   rS   c                 P   ||n| j                   j                  }| j                  ||||||      }|d   }| j                  |d d dd d f         }	| j	                  |d d dd d f         }
|	|
z   dz  }|s||	|
f|dd  z   }|S t        ||	|
|j                  |j                        S )Nr\  r   r   r"   )r`  rh  ri  r   r   )r   r-  r  rn  ro  rg  r   r   )r4   rT   r   r   r   r   rS   r   r2  rh  ri  r`  r   s                r6   rc   z-DeiTForImageClassificationWithTeacher.forwardj  s     &1%<k$++B]B]))/!5#%=  
 "!*((Aq)AB
"::?1aQR7;ST 22a7j*=>LFM:! 3!//))
 	
r7   )NNNNNF)re   rf   rg   r   r$   r   r   r&   rj   ri   r   r   rg  rc   rm   rn   s   @r6   rl  rl  M  s    z d "  04,0,0/3&*).&
u||,&
 ELL)&
 $D>	&

 'tn&
 d^&
 #'&
 
uAA	B&
 &
r7   rl  )rT  rl  r?  r  r  )r   )>rh   collections.abcrv   dataclassesr   typingr   r   r   r&   torch.utils.checkpointr   torch.nnr   r	   r
   activationsr   modeling_layersr   modeling_outputsr   r   r   r   modeling_utilsr   r   pytorch_utilsr   r   utilsr   r   r   r   configuration_deitr   
get_loggerre   r   Moduler   r,   rj   floatr   r   r   r   r   r   r   r   r  r  r"  r?  rT  rg  rl  __all__r   r7   r6   <module>r     sR     ! , ,    A A ! 9  G Q D D * 
		H	%VRYY Vr")) P %II%<<% 
% <<	%
 U\\*% % %>F		 FTRYY &$BII $Pryy "  '* 'V(
")) (
V // / /@ [
# [
 [
~  	e
!4 e
e
P g
!4 g
g
T 
:+ : :& 
9
,? 9

9
xr7   