
    rhP                         d Z ddlmZ ddlmZ ddlmZ ddlmZ  ej                  e
      Z G d de      Z G d	 d
e      Z G d de      Zg dZy)zDia model configuration    )Optional   )PretrainedConfig)rope_config_validation)loggingc                   ~     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 ddedededededed	ed
ededededee	   def fdZ
 xZS )DiaEncoderConfiga  
    This is the configuration class to store the configuration of a [`DiaEncoder`]. It is used to instantiate a Dia
    encoder according to the specified arguments, defining the encoder architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 16):
            Number of key and value heads for each attention layer in the Transformer encoder.
        head_dim (`int`, *optional*, defaults to 128):
            Dimensionality of the attention head.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        vocab_size (`int`, *optional*, defaults to 256):
            Vocabulary size of the Dia model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`DiaModel`].
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"swish"` and `"gelu_new"` are supported.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    dia_encodermax_position_embeddingsnum_hidden_layershidden_sizenum_attention_headsnum_key_value_headshead_dimintermediate_sizenorm_eps
vocab_size
hidden_act
rope_thetarope_scalinginitializer_rangec                 \   || _         || _        || _        || _        || _        || _        || _        |	| _        || _        |
| _	        || _
        || _        | j                  *d| j                  v r| j                  d   | j                  d<   t        |        || _        t        | <  di | y )Ntype	rope_type )r   r   r   r   r   r   r   r   r   r   r   r   r   r   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                  |/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/dia/configuration_dia.pyr   zDiaEncoderConfig.__init__g   s    " (?$!2&!2#6   $#6 $$( (Vt7H7H-H-1->->v-FDk*t$!2"6"    )      r#      r%      i   h㈵>   silu     @N{Gz?)__name__
__module____qualname____doc__
model_typeintfloatstrr   dictr   __classcell__r    s   @r!   r	   r	      s    GR J (,!##%#%!% #'+#'##!$## ## 	##
 !## !## ## ## ## ## ## ## tn## !## ##r"   r	   c            )            e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddedededededed	ed
edededededededededee	   dede
de
f( fdZ xZS )DiaDecoderConfiga  
    This is the configuration class to store the configuration of a [`DiaDecoder`]. It is used to instantiate a Dia
    decoder according to the specified arguments, defining the decoder architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        max_position_embeddings (`int`, *optional*, defaults to 3072):
            The maximum sequence length that this model might ever be used with.
        num_hidden_layers (`int`, *optional*, defaults to 18):
            Number of hidden layers in the Transformer decoder.
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the decoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            Number of key and value heads for each attention layer in the Transformer decoder.
        head_dim (`int`, *optional*, defaults to 128):
            Dimensionality of the attention head.
        cross_num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each cross-attention layer in the Transformer decoder.
        cross_head_dim (`int`, *optional*, defaults to 128):
            Dimensionality of the cross-attention head.
        cross_num_key_value_heads (`int`, *optional*, defaults to 16):
            Number of key and value heads for each cross-attention layer in the Transformer decoder.
        cross_hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the cross-attention layers.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        vocab_size (`int`, *optional*, defaults to 1028):
            Vocabulary size of the Dia model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`DiaModel`].
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder. If string, `"gelu"`, `"relu"`,
            `"swish"` and `"gelu_new"` are supported.
        num_channels (`int`, *optional*, defaults to 9):
            Number of channels for the Dia decoder.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        is_encoder_decoder (`bool`, *optional*, defaults to `True`):
            Indicating that this model is part of an encoder-decoder architecture.
    dia_decoderr   r   r   r   r   r   r   cross_num_attention_headscross_head_dimcross_num_key_value_headscross_hidden_sizer   r   r   num_channelsr   r   r   	use_cacheis_encoder_decoderc                    || _         || _        || _        || _        || _        || _        || _        |
| _        || _        |	| _	        || _
        || _        || _        || _        || _        || _        || _        | j                   *d| j                   v r| j                   d   | j                   d<   t#        |        || _        || _        t)        | T  dd|i| y )Nr   r   r@   r   )r   r   r   r   r   r   r   r<   r:   r;   r=   r   r   r   r>   r   r   r   r   r?   r   r   )r   r   r   r   r   r   r   r   r:   r;   r<   r=   r   r   r   r>   r   r   r   r?   r@   r   r    s                         r!   r   zDiaDecoderConfig.__init__   s    0 (?$!2&!2#6 #6  )B&)B&,!2 $$($( (Vt7H7H-H-1->->v-FDk*t$!2"I,>I&Ir"   )i      i   i    r%      r&   r%   r&   r%   r#   r'   i  r)   	   r*   Nr+   TT)r,   r-   r.   r/   r0   r1   r2   r3   r   r4   boolr   r5   r6   s   @r!   r8   r8      s9   Un J (,!#!%#%#$)+!)+!% #'+#'#'+0J!$0J 0J 	0J
 0J !0J !0J 0J $'0J 0J $'0J 0J 0J 0J 0J  !0J" #0J$ tn%0J& !'0J( )0J* !+0J 0Jr"   r8   c                        e Zd ZdZdZdgZeedZ	 	 	 	 	 	 	 	 	 	 dde	e   de	e   de
ded	ed
edede	ee      de
def fdZddZ xZS )	DiaConfigaw	  
    This is the configuration class to store the configuration of a [`DiaModel`]. It is used to instantiate a
    Dia model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the
    [nari-labs/Dia-1.6B](https://huggingface.co/nari-labs/Dia-1.6B) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        encoder_config (`DiaEncoderConfig`, *optional*):
            Configuration for the encoder part of the model. If not provided, a default `DiaEncoderConfig` will be used.
        decoder_config (`DiaDecoderConfig`, *optional*):
            Configuration for the decoder part of the model. If not provided, a default `DiaDecoderConfig` will be used.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        is_encoder_decoder (`bool`, *optional*, defaults to `True`):
            Indicating that this model uses an encoder-decoder architecture.
        pad_token_id (`int`, *optional*, defaults to 1025):
            Padding token id.
        eos_token_id (`int`, *optional*, defaults to 1024):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 1026):
            Beginning of stream token id.
        delay_pattern (`list[int]`, *optional*, defaults to `[0, 8, 9, 10, 11, 12, 13, 14, 15]`):
            The delay pattern for the decoder. The length of this list must match `decoder_config.num_channels`.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import DiaConfig, DiaModel

    >>> # Initializing a DiaConfig with default values
    >>> configuration = DiaConfig()

    >>> # Initializing a DiaModel (with random weights) from the configuration
    >>> model = DiaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    diapast_key_values)encoder_configdecoder_configrJ   rK   r   r@   pad_token_ideos_token_idbos_token_iddelay_patternr   r?   c                    t        |t              rt        di |}t        |t              rt        di |}||n	t               | _        ||n	t               | _        || _        ||ng d| _        |	| _        |
| _	        | j
                  j                  t        | j                        k(  sJ d       t        | 4  d||||d| y )N)	r      rD   
      r$            z3Number of channels must match delay pattern length.)rL   rM   rN   r@   r   )
isinstancer4   r	   r8   rJ   rK   r   rO   r   r?   r>   lenr   r   )r   rJ   rK   r   r@   rL   rM   rN   rO   r   r?   r   r    s               r!   r   zDiaConfig.__init__N  s     nd+-??Nnd+-??N0>0JnP`Pb0>0JnP`Pb .;.G]Mn!2"""//3t7I7I3JJ 	
A	
J 	 	
%%%1		

 	
r"   c                     | j                   S )z^Defaulting to audio config as it's the decoder in this case which is usually the text backbone)rK   )r   decoders     r!   get_text_configzDiaConfig.get_text_configs  s    """r"   )
NNr'   Ti  r#   i  Nr+   T)F)r,   r-   r.   r/   r0   keys_to_ignore_at_inferencer	   r8   sub_configsr   r2   rE   r1   listr   r[   r5   r6   s   @r!   rG   rG     s    -^ J#4"5%5IYZK 6:59#'   -1#'#
 !12#
 !!12#
 	#

 !#
 #
 #
 #
  S	*#
 !#
 #
J#r"   rG   )rG   r	   r8   N)r/   typingr   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr,   loggerr	   r8   rG   __all__r   r"   r!   <module>rf      sd      3 9  
		H	%o#' o#dJJ' JJZ[#  [#| @r"   