
    rh7!                         d Z ddlmZmZ ddlZddlmZ ddlm	Z	 ddl
mZmZmZ  ej                  e      Z G d d	e      Zd	gZy)
zFeature extractor class for Dia    )OptionalUnionN   )SequenceFeatureExtractor)BatchFeature)PaddingStrategy
TensorTypeloggingc                        e Zd ZdZddgZ	 	 	 	 ddedededef fdZ	 	 	 	 	 dd	ee	j                  ee   ee	j                     eee      f   d
eeeeef      dee   dee   deeeef      dee   defdZ xZS )DiaFeatureExtractora>  
    Constructs an Dia feature extractor.

    This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
    most of the main methods. Users should refer to this superclass for more information regarding those methods.

    Args:
        feature_size (`int`, *optional*, defaults to 1):
            The feature dimension of the extracted features. Use 1 for mono, 2 for stereo.
        sampling_rate (`int`, *optional*, defaults to 16000):
            The sampling rate at which the audio waveform should be digitalized, expressed in hertz (Hz).
        padding_value (`float`, *optional*, defaults to 0.0):
            The value that is used for padding.
        hop_length (`int`, *optional*, defaults to 512):
            Overlap length between successive windows.
    input_valuesn_quantizersfeature_sizesampling_ratepadding_value
hop_lengthc                 :    t        |   d|||d| || _        y )N)r   r   r    )super__init__r   )selfr   r   r   r   kwargs	__class__s         /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/dia/feature_extraction_dia.pyr   zDiaFeatureExtractor.__init__1   s'     	wl-_lwpvw$    	raw_audiopadding
truncation
max_lengthreturn_tensorsreturnc                    |;|| j                   k7  rYt        d|  d| j                    d| j                    d| d	      t        j                  d| j                  j
                   d       |r|rt        d      |d	}t        t        |t        t        f      xr( t        |d
   t        j                  t        t        f            }|r=|D cg c]1  }t        j                  |t        j                        j                  3 }}n|s@t        |t        j                        s&t        j                  |t        j                        }nht        |t        j                        rN|j                  t        j                  t        j                         u r|j#                  t        j                        }|s t        j                  |      j                  g}t%        |      D ]>  \  }	}
| j&                  dk(  s|
j(                  dk(  s&t        j*                  |
d      ||	<   @ t%        |      D ]  \  }	}
|
j(                  dkD  rt        d|
j,                         | j&                  dk(  r+|
j(                  dk7  rt        d|
j,                  d    d      | j&                  dk(  sw|
j(                  dk7  st        d|
j,                  d    d       t/        d|i      }| j&                  }d| _        | j1                  ||||d	| j2                        }|j5                  d      |d<   g }|j5                  d      D ]1  }
| j&                  dk(  r|
d   }
|j7                  |
j                         3 ||d<   ||j9                  |      }|| _        |S c c}w )a  
        Main method to featurize and prepare for the model one or several sequence(s).

        Args:
            raw_audio (`np.ndarray`, `list[float]`, `list[np.ndarray]`, `list[list[float]]`):
                The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float
                values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape
                `(num_samples,)` for mono audio (`feature_size = 1`), or `(2, num_samples)` for stereo audio
                (`feature_size = 2`).
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            truncation (`bool`, *optional*, defaults to `False`):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            return_tensors (`str` or [`~utils.TensorType`], *optional*, default to 'pt'):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors.
        z3The model corresponding to this feature extractor: z& was trained using a sampling rate of zB. Please make sure that the provided audio input was sampled with z	 and not .zDIt is strongly recommended to pass the `sampling_rate` argument to `zN()`. Failing to do so can result in silent errors that might be hard to debug.zABoth padding and truncation were set. Make sure you only set one.Tr   )dtype   z6Expected input shape (channels, length) but got shape    z$Expected mono audio but example has z	 channelsz&Expected stereo audio but example has r   )r   r   r   return_attention_maskpad_to_multiple_ofattention_maskpadding_mask).N)r   
ValueErrorloggerwarningr   __name__bool
isinstancelisttuplenpndarrayasarrayfloat32Tr$   float64astype	enumerater   ndimmeanshaper   padr   popappendconvert_to_tensors)r   r   r   r   r   r    r   
is_batchedaudioidxexampler   origingal_feature_sizepadded_inputss                 r   __call__zDiaFeatureExtractor.__call__<   st   T $ 2 22 I$ P**+ ,**+9]O1F  NNVW[WeWeWnWnVo p\ \
 z`aa_Gy4-0jj1PRPZPZ\acgOh6i

 LUV5E<>>VIVJy"**$E

9BJJ?I	2::.9??bhhrzzFZ3Z!((4I I.001I &i0 	6LC  A%',,!*;!#"!5	#	6
 &i0 	hLC||a #YZaZgZgYh!ijj  A%',,!*; #GVXHYGZZc!dee  A%',,!*; #I'--XZJ[I\\e!fgg	h $^Y$?@ "&!2!2 !!"&# ! 
 )6(9(9:J(Kn%$((8 	+G  A%!),		*	+
 )5n%%)<<^LM 3m Ws   6N
)r'   i>  g        i   )NFNNN)r/   
__module____qualname____doc__model_input_namesintfloatr   r   r4   r5   r2   r   r0   strr   r	   r   rI   __classcell__)r   s   @r   r   r      s   " (8 ""	%	% 	% 		%
 	% @D%*$(;?'+xT%[$rzz2BDeDUUVx %c? :;<x TN	x
 SMx !sJ!78x  }x 
xr   r   )rL   typingr   r   numpyr4   !feature_extraction_sequence_utilsr   feature_extraction_utilsr   utilsr   r	   r
   
get_loggerr/   r-   r   __all__r   r   r   <module>rY      sJ    & "  I 4 9 9 
		H	%W2 Wt !
!r   