
    rhR6                     8    d dl mZ d dlmZ  G d de      ZdgZy)   )PretrainedConfig)rope_config_validationc                        e Zd ZdZdZdgZi dddddddd	d
d	dddddddddddddddd	ddddddZdgdgfddgdgfdgdgfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S ) 
DogeConfiga   
    This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
    model according to the specified arguments, defining the model architecture like [SmallDoge/Doge-320M](https://huggingface.co/SmallDoge/Doge-320M).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32768):
            Vocabulary size of the Doge2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            Dropout probability for each sequence transformation and state transformation module.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings.
            NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
            Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
                    In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'.
                    The original max position embeddings used during pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation.
                    If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
                    Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
                    Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention.
            If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
            When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
            For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
            If it is not specified, will default to `num_attention_heads`.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `None`.
        keep_window_size (`int`, *optional*, defaults to 2048):
            The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
        is_moe (`bool`, *optional*, defaults to `False`):
            Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize.
        num_experts (`int`, *optional*, defaults to 16384):
            Number of routed experts in the model. This is only used when `is_moe=True`.
        num_experts_per_tok (`int`, *optional*, defaults to 64):
            Number of selected experts to route per-token.
        norm_topk_prob (`bool`, *optional*, defaults to `False`):
            Whether to normalize the topk probabilities.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabling this will also
            allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.

    ```python
    >>> from transformers import DogeConfig, DogeModel

    >>> # Initializing a Doge-320M style configuration
    >>> configuration = DogeConfig()

    >>> # Initializing a model from the Doge-320M style configuration
    >>> model = DogeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```dogepast_key_valueszlayers.*.self_attn.q_projcolwisezlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.dt_projrowwisezlayers.*.self_attn.o_projzlayers.*.input_layernorm.weightsequence_parallelzlayers.*.input_residual.weightz(layers.*.post_attention_layernorm.weightz'layers.*.post_attention_residual.weightznorm.weightzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projzlayers.*.mlp.router_gatecolwise_repzlayers.*.mlp.down_embedrowwise_repzlayers.*.mlp.up_embed	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        || _	        || _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        | j                  *d| j                  v r| j                  d   | j                  d<   t3        |        ||| _        t5        | l  dd|
i| y )Ntype	rope_typetie_word_embeddings )
vocab_sizehidden_sizeintermediate_sizenum_hidden_layershidden_dropout
hidden_actinitializer_rangerms_norm_eps	use_cachemax_position_embeddings
rope_thetarope_scalingnum_attention_headsnum_key_value_headsattention_biasattention_dropoutmlp_biassliding_windowkeep_window_sizeis_moenum_expertsnum_experts_per_toknorm_topk_proboutput_router_logitsrouter_aux_loss_coefr   super__init__)selfr   r   r   r   r   r   r    r!   r"   r   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   kwargs	__class__s                               ~/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/doge/configuration_doge.pyr4   zDogeConfig.__init__   s2   < %&!2!2,$!2("'>$$(#6 #6 ,!2 , 0&#6 ,$8!$8! (Vt7H7H-H-1->->v-FDk*t$ &':D$ 	
 3	
	
    )i   i                  silug{Gz?gư>TFr:   g     @N   NFr<   FNr:   Fi @  @   FFgMbP?)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr4   __classcell__)r7   s   @r8   r   r      su   n` J#4"5#Y#Y 	$Y 	%i	
 	$Y 	*+> 	)*= 	34G 	23F 	* 	!) 		 	!) 	#M 	"=  	 !& &(9:#%568IJ!"_$56 ! $ ""7G
 G
r9   r   N)configuration_utilsr   modeling_rope_utilsr   r   __all__r   r9   r8   <module>rL      s&   . 4 9S
! S
l .r9   