
    rhS                        d Z ddlmZmZ ddlZddlmZmZ ddl	m
Z
mZmZ ddlmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ dd	lmZmZm Z   e       rddl!Z! e       rddl"Z"dd
l"m#Z#m$Z$ ddl%m&Z&  ejN                  e(      Z)	 ddejT                  deee+ef      fdZ,	 ddedeee+ef      defdZ-defdZ. G d de
      Z/dgZ0y)z%Image processor class for SuperPoint.    )OptionalUnionN   )is_torch_availableis_vision_available)BaseImageProcessorBatchFeatureget_size_dict)resizeto_channel_dimension_format)ChannelDimension
ImageInput	ImageTypePILImageResamplingget_image_typeinfer_channel_dimension_formatis_pil_imageis_scaled_imageis_valid_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypeloggingrequires_backends)Image	ImageDraw   )KeypointMatchingOutputimageinput_data_formatc                    |t         j                  k(  rQ| j                  d   dk(  ryt        j                  | d   | d   k(        xr t        j                  | d   | d   k(        S |t         j
                  k(  rQ| j                  d   dk(  ryt        j                  | d   | d	   k(        xr t        j                  | d	   | d
   k(        S y )Nr   r   Tr   .r   .   ..r   .r   .r&   )r   FIRSTshapenpallLAST)r    r!   s     /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/efficientloftr/image_processing_efficientloftr.pyis_grayscaler1   5   s     ,222;;q>QvveFmuV}45`"&&vRWX^R_A_:``	.33	3;;r?avveFmuV}45`"&&vRWX^R_A_:`` 
4    returnc                    t        t        dg       t        | t        j                        rt        | |      r| S |t        j                  k(  r7| d   dz  | d   dz  z   | d   dz  z   }t        j                  |gd	z  d
      }|S |t        j                  k(  r5| d   dz  | d   dz  z   | d   dz  z   }t        j                  |gd	z  d      }S t        | t        j                  j                        s| S | j                  d      } | S )ao  
    Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch
    and tensorflow grayscale conversion

    This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each
    channel, because of an issue that is discussed in :
    https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446

    Args:
        image (Image):
            The image to convert.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the input image.
    visionr!   r#   gŏ1w-!?r$   gbX9?r%   gv/?r   r   )axisr(   r)   r*   r'   L)r   convert_to_grayscale
isinstancer-   ndarrayr1   r   r+   stackr/   PILr   convert)r    r!   
gray_images      r0   r9   r9   D   s   $ *XJ7%$1BCL 0 6 66v/%-&2HH5QW=[aKaaJ:,"2;J  "2"7"77v/%-&2HH5QW=[aKaaJ:,"2<JeSYY__-MM#ELr2   imagesc                     d}d t        | t              rQt        |       dk(  rt        fd| D              r| S t        fd| D              r| D cg c]  }|D ]  }|  c}}S t	        |      c c}}w )N)z-Input images must be a one of the following :z - A pair of PIL images.z - A pair of 3D arrays.z! - A list of pairs of PIL images.z  - A list of pairs of 3D arrays.c                     t        |       xsC t        |       xr6 t        |       t        j                  k7  xr t        | j                        dk(  S )z$images is a PIL Image or a 3D array.r   )r   r   r   r   r=   lenr,   )r    s    r0   _is_valid_imagez8validate_and_format_image_pairs.<locals>._is_valid_imaget   sG    E" 
5!fnU&;y}}&LfQTUZU`U`QaefQf	
r2   r&   c              3   .   K   | ]  } |        y wN .0r    rD   s     r0   	<genexpr>z2validate_and_format_image_pairs.<locals>.<genexpr>{   s     #Q_U%;#Q   c              3      K   | ]:  }t        |t              xr$ t        |      d k(  xr t        fd|D               < yw)r&   c              3   .   K   | ]  } |        y wrF   rG   rH   s     r0   rJ   z<validate_and_format_image_pairs.<locals>.<genexpr>.<genexpr>   s     CuOE*CrK   N)r:   listrC   r.   )rI   
image_pairrD   s     r0   rJ   z2validate_and_format_image_pairs.<locals>.<genexpr>}   sN      
  z4( DJ1$DC
CCD
s   A A)r:   rN   rC   r.   
ValueError)r@   error_messagerO   r    rD   s       @r0   validate_and_format_image_pairsrR   k   s    M
 &$v;!#Q&#Q QM 
 %	
 
 -3Kj
KuEKEKK
]
## Ls   A3c                       e Zd ZdZdgZddej                  dddfdedee	e
ef      ded	ed
ededdf fdZ	 	 ddej                  de	e
ef   deee
ef      deee
ef      fdZdddddddej&                  df	dee   dee	e
ef      ded	ee   d
ee   dee   deee
ef      dedeee
ef      defdZ	 ddddeeee   f   dedee	e
ej4                  f      fdZdedee	e
ej4                  f      ded   fdZd Z xZS ) EfficientLoFTRImageProcessorao  
    Constructs a EfficientLoFTR image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
            by `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`):
            Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to
            `True`. Can be overriden by `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
            method.
        do_grayscale (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to grayscale. Can be overriden by `do_grayscale` in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizeresample
do_rescalerescale_factordo_grayscaler3   c                     t        |   di | ||nddd}t        |d      }|| _        || _        || _        || _        || _        || _        y )Ni  i  )heightwidthFdefault_to_squarerG   )	super__init__r
   rV   rW   rX   rY   rZ   r[   )	selfrV   rW   rX   rY   rZ   r[   kwargs	__class__s	           r0   rb   z%EfficientLoFTRImageProcessor.__init__   s^     	"6"'tc-JTU;"	 $,(r2   r    data_formatr!   c                 L    t        |d      }t        |f|d   |d   f||d|S )aL  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]`):
                Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the output image. If not provided, it will be inferred from the input
                image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Fr_   r]   r^   )rW   rf   r!   )r
   r   )rc   r    rW   rf   r!   rd   s         r0   r   z#EfficientLoFTRImageProcessor.resize   sE    : TU;
x.$w-0#/	

 
 	
r2   return_tensorsc                 (   ||n| j                   }||n| j                  }||n| j                  }||n| j                  }||n| j                  }||n| j
                  }t        |d      }t        |      }t        |      st        d      t        |||||       |D cg c]  }t        |       }}t        |d         r|rt        j                  d       |
t        |d         }
g }|D ]]  }|r| j!                  ||||
      }|r| j#                  |||
      }|rt%        ||
	      }t'        ||	|

      }|j)                  |       _ t+        dt-        |      d      D cg c]
  }|||dz     }}d|i}t/        ||      S c c}w c c}w )a   
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image pairs to preprocess. Expects either a list of 2 images or a list of list of 2 images list with
                pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set
                `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
                is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
                image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
                `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_grayscale (`bool`, *optional*, defaults to `self.do_grayscale`):
                Whether to convert the image to grayscale.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Fr_   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)rV   rW   rX   rY   rZ   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)r    rW   rX   r!   )r    scaler!   r6   )input_channel_dimr&   rU   )datatensor_type)rV   rX   rY   rZ   r[   rW   r
   rR   r   rP   r   r   r   loggerwarning_oncer   r   rescaler9   r   appendrangerC   r	   )rc   r@   rV   rW   rX   rY   rZ   r[   rh   rf   r!   rd   r    
all_imagesiimage_pairsrl   s                    r0   
preprocessz'EfficientLoFTRImageProcessor.preprocess   s   t "+!6IDNN	'38#-#9Zt
+9+E4K^K^'3'?|TEVEV'tTYYTU; 18F#: 
 	&!)	
 6<<E.'<<6!9%*s
 $ >vay I
 	%E%dXars5Zkl,UFWX/{VghEe$	% 7<As:PQ6RSz!a!e,SS,>BB? =6 Ts   #F
(Foutputsr   target_sizes	thresholdc                 4   |j                   j                  d   t        |      k7  rt        d      t	        d |D              st        d      t        |t              r,t        j                  ||j                   j                        }n1|j                  d   dk7  s|j                  d   dk7  rt        d      |}|j                  j                         }||j                  d      j                  dddd      z  }|j                  t        j                        }g }t!        ||j                   |j"                        D ]X  \  }}}	t        j$                  |	|kD  |dkD        }
|d   |
d      }|d   |
d      }|	d   |
d      }|j'                  |||d	       Z |S )
a  
        Converts the raw output of [`KeypointMatchingOutput`] into lists of keypoints, scores and descriptors
        with coordinates absolute to the original image sizes.
        Args:
            outputs ([`KeypointMatchingOutput`]):
                Raw outputs of the model.
            target_sizes (`torch.Tensor` or `List[Tuple[Tuple[int, int]]]`, *optional*):
                Tensor of shape `(batch_size, 2, 2)` or list of tuples of tuples (`Tuple[int, int]`) containing the
                target size `(height, width)` of each image in the batch. This must be the original image size (before
                any processing).
            threshold (`float`, *optional*, defaults to 0.0):
                Threshold to filter out the matches with low scores.
        Returns:
            `List[Dict]`: A list of dictionaries, each dictionary containing the keypoints in the first and second image
            of the pair, the matching scores and the matching indices.
        r   zRMake sure that you pass in as many target sizes as the batch dimension of the maskc              3   8   K   | ]  }t        |      d k(    yw)r&   N)rC   )rI   target_sizes     r0   rJ   zNEfficientLoFTRImageProcessor.post_process_keypoint_matching.<locals>.<genexpr>l  s     I[3{#q(Is   zTEach element of target_sizes must contain the size (h, w) of each image of the batch)devicer   r&   r'   )
keypoints0
keypoints1matching_scores)matchesr,   rC   rP   r.   r:   rN   torchtensorr}   	keypointscloneflipreshapetoint32zipr   logical_andrq   )rc   rw   rx   ry   image_pair_sizesr   resultskeypoints_pairr   scoresvalid_matchesmatched_keypoints0matched_keypoints1r   s                 r0   post_process_keypoint_matchingz;EfficientLoFTRImageProcessor.post_process_keypoint_matchingT  s   , ??  #s<'88qrrILIIsttlD)$||LAWAWX!!!$)\-?-?-Ba-G j   ,%%++-	 0 5 5b 9 A A"aA NN	LL-	/29goowOfOf/g 	+NGV!--fy.@'B,OM!/!2=3C!D!/!2=3C!D$Qia(89ONN"4"4'6	  r2   r@   keypoint_matching_outputzImage.Imagec           	         t        |      }|D cg c]  }t        |       }}t        dt        |      d      D cg c]
  }|||dz     }}g }t	        ||      D ]  \  }}|d   j
                  dd \  }	}
|d   j
                  dd \  }}t        j                  t        |	|      |
|z   dft        j                        }|d   |d|	d|
f<   |d   |d||
df<   t        j                  |      }t        j                  |      }|d   j                  d      \  }}|d   j                  d      \  }}t	        |||||d	         D ]  \  }}}}}| j                  |      }|j!                  ||||
z   |f|d
       |j#                  |dz
  |dz
  |dz   |dz   fd       |j#                  ||
z   dz
  |dz
  ||
z   dz   |dz   fd        |j%                  |        |S c c}w c c}w )a  
        Plots the image pairs side by side with the detected keypoints as well as the matching between them.

        Args:
            images (`ImageInput`):
                Image pairs to plot. Same as `EfficientLoFTRImageProcessor.preprocess`. Expects either a list of 2
                images or a list of list of 2 images list with pixel values ranging from 0 to 255.
            keypoint_matching_output (List[Dict[str, torch.Tensor]]]):
                A post processed keypoint matching output

        Returns:
            `List[PIL.Image.Image]`: A list of PIL images, each containing the image pairs side by side with the detected
            keypoints as well as the matching between them.
        r   r&   Nr   r   )dtyper~   r   r   )fillr^   black)r   )rR   r   rr   rC   r   r,   r-   zerosmaxuint8r   	fromarrayr   Drawunbind
_get_colorlineellipserq   )rc   r@   r   r    rt   ru   r   rO   pair_outputheight0width0height1width1
plot_imageplot_image_pildrawkeypoints0_xkeypoints0_ykeypoints1_xkeypoints1_ykeypoint0_xkeypoint0_ykeypoint1_xkeypoint1_ymatching_scorecolors                             r0   visualize_keypoint_matchingz8EfficientLoFTRImageProcessor.visualize_keypoint_matching  sI   & 185;<E.'<<273v;2JKQva!a%(KK'*;8P'Q 	+#J(m11"15OGV(m11"15OGV3w#8&6/1"MUWU]U]^J,6qMJxx&(),6qMJxx()"__Z8N>>.1D)4\)B)I)I!)L&L,)4\)B)I)I!)L&L,VYlL,TeHfW R[+{N 7		 +{V/C[Q  
 kAo{QaQ\_`Q`ahop 6)A-{Qf@TWX@XZehiZij    NN>*7	+8 A =Ks
   G G%c                 N    t        dd|z
  z        }t        d|z        }d}|||fS )zMaps a score to a color.   r   r   )int)rc   scorergbs        r0   r   z'EfficientLoFTRImageProcessor._get_color  s4    q5y!"e1ayr2   )NN)g        ) __name__
__module____qualname____doc__model_input_namesr   BILINEARboolr   dictstrr   floatrb   r-   r;   r   r   r   r+   r   r	   rv   rN   tupler   Tensorr   r   r   r   __classcell__)re   s   @r0   rT   rT      sS   , (( )-'9'B'B '!)) tCH~&) %	)
 ) ) ) 
)4 ?CDH%
zz%
 38n%
 eC)9$9:;	%

 $E#/?*?$@A%
V %))-'+%)*.'+;?(8(>(>DHtC D>tC tCH~&	tC
 %tC TNtC !tC tntC !sJ!78tC &tC $E#/?*?$@AtC 
tCt 	9)9 JU349 	9
 
d3$%	&9v44 #'tC,='>"?4 
m		4lr2   rT   rF   )1r   typingr   r   numpyr-    r   r   image_processing_utilsr   r	   r
   image_transformsr   r   image_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   r=   r   r   modeling_efficientloftrr   
get_loggerr   rn   r;   r   r1   r9   rR   rT   __all__rG   r2   r0   <module>r      s    , "  7 U U C    < ; $?			H	% AEa::ac+;&; <=a" AE##c+;&; <=# #N$J $8C#5 CL
 *
*r2   