
    rhB1                     0    d dl mZmZ  G d de      ZdgZy)   )PretrainedConfiglayer_type_validationc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )Exaone4Configa  
    This is the configuration class to store the configuration of a [`Exaone4Model`]. It is used to
    instantiate a EXAONE 4.0 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the EXAONE-4.0-Instruct [LGAI-EXAONE/EXAONE-4.0-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-Instruct)
    NOTE: `EXAONE-4.0-Instruct` is a placeholder model ID. The exact model ID will be updated in the future.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
    outputs. Read the documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 102400):
            Vocabulary size of the EXAONE 4.0 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Exaone4Model`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
            Dimensionality of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 32768 for EXAONE 3.5).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if ``config.is_decoder=True``.
        bos_token_id (`int`, *optional*, defaults to 0):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        sliding_window (`int`, *optional*):
            The size of the sliding window for the sliding window attention.
        sliding_window_pattern (`str`, *optional*):
            The pattern to use for sliding window attention. Can be one of:
                - `None`: No sliding window attention is used
                - `int`: Every `sliding_window` layers, use global attention, else use local attention.
                - `str`: A sequence of "L" (local attention) and "G" (global attention) characters that defines the
                  attention pattern. The pattern starts from layer 0 and repeats every `sliding_window` layers. The
                  final layer always uses global attention regardless of the pattern.
            For instance, sliding_window_pattern="LLLG" same as sliding_window=4, which means:
                - Layer 0, 1, 2: local attention,
                - Layer 3: global attention,
                ...(repeated)
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Prioritized over `sliding_window_pattern`.

    Example:

    ```python
    >>> from transformers import Exaone4Model, Exaone4Config

    >>> # Initializing a EXAONE configuration
    >>> configuration = Exaone4Config()

    >>> # Initializing a model from configuration
    >>> model = Exaone4Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```exaone4past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 4   || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        | j                  d}| j                   Dt#        | j                        D cg c]   }|dz   |z  dk7  r|| j                  k  rdnd" c}| _        d| j                   v rd| _        t'        | j                          t)        | T  d|||d| y c c}w )	N       sliding_attentionfull_attentionsliding_windowhybrid)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsnum_key_value_headsintermediate_size
hidden_actmax_position_embeddingsinitializer_rangerms_norm_eps	use_cacheattention_dropout
rope_thetarope_scalingr   sliding_window_patternlayer_typesrangecache_implementationr   super__init__)selfr   r   r"   r   r    r!   r#   r$   r%   r&   r'   r   r   r   r)   r*   r(   r   r+   r,   kwargsi	__class__s                          /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/exaone4/configuration_exaone4.pyr0   zExaone4Config.__init__   sG   0 %&!2#6 #6 !2$'>$!2("!2$(,&<#&&%&"#
 t556	   U56!;DDZDZ@Z $%& D t///(0D%d../ 	
%LVi	
ms	
 s   *%D)i     i @      r7   r7   silui   g{Gz?gh㈵>Tr      Fg     @Ng        r6      N)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr0   __classcell__)r4   s   @r5   r   r      s    un J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56  $! +9
 9
    r   N)configuration_utilsr   r   r   __all__r   rD   r5   <module>rG      s%   , KC
$ C
L 
rD   