
    rh<r                       d Z ddlZddlZddlmZ ddlmZ ddlmZmZm	Z	 ddl
Z
ddlZ
ddl
mZ ddlmZ dd	lmZ dd
lmZmZ ddlmZmZmZ ddlmZmZmZmZ ddlmZmZm Z m!Z!m"Z"  ejF                  e$      Z%dZ&dZ'dZ(e	e"e e!f   Z)e ed       G d de                    Z*e ed       G d de                    Z+e ed       G d de                    Z, G d dejZ                        Z. G d dejZ                        Z/ G d d ejZ                        Z0 G d! d"ejZ                        Z1 G d# d$ejZ                        Z2 G d% d&ejZ                        Z3 G d' d(ejZ                        Z4 G d) d*ejZ                        Z5 G d+ d,e      Z6 G d- d.ejZ                        Z7 G d/ d0ejZ                        Z8e G d1 d2e             Z9e G d3 d4e9             Z:e G d5 d6e9             Z;e G d7 d8e9             Z<e G d9 d:e9             Z= G d; d<ejZ                        Z> G d= d>ejZ                        Z? G d? d@ejZ                        Z@ edA       G dB dCe9             ZA G dD dEejZ                        ZB G dF dGejZ                        ZC G dH dIejZ                        ZD G dJ dKejZ                        ZE edL       G dM dNe9             ZFg dOZGy)PzPyTorch FLAVA model.    N)OrderedDict)	dataclass)AnyOptionalUnion)nn   )ACT2FN)GradientCheckpointingLayer)BaseModelOutputBaseModelOutputWithPooling)PreTrainedModel find_pruneable_heads_and_indicesprune_linear_layer)ModelOutputauto_docstringlogging	torch_int   )FlavaConfigFlavaImageCodebookConfigFlavaImageConfigFlavaMultimodalConfigFlavaTextConfigzfacebook/flava-image-codebookg$(~k@a  
    Output from FlavaModel containing embeddings and outputs from individual encoders.

    Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
    transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
    `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
    )custom_introc                       e Zd ZU dZdZeej                     ed<   dZ	ee
   ed<   dZeej                     ed<   dZee
   ed<   dZeej                     ed<   dZee
   ed<   d	ee   fd
Zy)FlavaModelOutputa  
    image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
        The image embeddings which are basically the pooled output of [`FlavaImageModel`].
    image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
        The output of the [`FlavaImageModel`].
    text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
        The text embeddings which are basically the pooled output of [`FlavaTextModel`].
    text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
        The output of the [`FlavaTextModel`].
    multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
        The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
    multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
        The output of the [`FlavaMultimodalModel`].
    Nimage_embeddingsimage_outputtext_embeddingstext_outputmultimodal_embeddingsmultimodal_outputreturnc                 H     t         fd j                         D              S )Nc              3   d   K   | ]'  }|d vr|   nt        |      j                          ) yw))r!   r   r#   Ngetattrto_tuple).0kselfs     {/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/flava/modeling_flava.py	<genexpr>z,FlavaModelOutput.to_tuple.<locals>.<genexpr>U   s=      
  TTDGZabfhiZjZsZsZuu
   -0tuplekeysr,   s   `r-   r)   zFlavaModelOutput.to_tupleT   s#     
YY[
 
 	
    )__name__
__module____qualname____doc__r   r   torchFloatTensor__annotations__r   r   r    r!   r"   r#   r1   r   r)    r4   r-   r   r   3   s     59hu00189=L(56=37OXe//078<K45<9=8E$5$56=>Bx :;B
%* 
r4   r   z@
    Class representing pretraining losses from FLAVA model
    c                      e Zd ZU dZdZeej                     ed<   dZ	eej                     ed<   dZ
eej                     ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   d	efd
Zy)FlavaLossesa  
    mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.):
        Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
    mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.):
        Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
    itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.):
        Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
        masked pairs in FLAVA.
    global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.):
        Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
        data. This is calculated on unmasked images and texts.
    mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.):
        Masked Multimodal Modeling loss's image component calculated on paired image-text data.
    mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.):
        Masked Multimodal Modeling loss's text component calculated on paired image-text data.
    Nmimmlmitmglobal_contrastive	mmm_imagemmm_textr$   c                 B    d}| j                         D ]	  }|d} |S  |S )NTF)values)r,   all_nonevs      r-   rG   zFlavaLosses.all_nonez   s5     	A} 		 r4   )r5   r6   r7   r8   r?   r   r9   r:   r;   r@   rA   rB   rC   rD   boolrG   r<   r4   r-   r>   r>   [   s    " (,C%##	$+'+C%##	$+'+C%##	$+6:!2!23:-1Ix))*1,0Hhu(()0$ r4   r>   a  
    Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.

    Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
    transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
    `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
    c                      e Zd ZU dZdZeej                     ed<   dZ	e
ed<   dZeej                     ed<   dZee   ed<   dZeej                     ed<   dZee   ed<   dZeej                     ed	<   dZee   ed
<   dZeej                     ed<   dZee   ed<   dZeej                     ed<   dZee   ed<   dZeej                     ed<   dZee   ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   dZeej                     ed<   dee    fdZ!y)FlavaForPreTrainingOutputay  
    loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
        Total loss calculated for this model.
    loss_info (`FlavaLosses`):
        Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
        the keys.
    image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
        The image embeddings which are basically the pooled output of [`FlavaImageModel`].
    image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
        The output of the [`FlavaImageModel`].
    text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
        The text embeddings which are basically the pooled output of [`FlavaTextModel`].
    text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
        The output of the [`FlavaTextModel`].
    multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
        The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
    multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
        The output of the [`FlavaMultimodalModel`].
    image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
        The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
        to create masked images.
    image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
        The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
    text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
        The text embeddings which are basically the pooled output of [`FlavaTextModel`].
    text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
        The output of the [`FlavaTextModel`].
    multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
        The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
    multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
        The output of the [`FlavaMultimodalModel`].
    mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
        The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
            returned when `bool_masked_pos` has some of the patches masked.
    mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
        The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
            the tokens masked.
    itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
        The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
    contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
        The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
        `image_projection` and `text_projection` layers respectively. This represents the image-text similarity
        scores. This is calculated on unmasked images and texts.
    contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
        The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
        `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
        texts.
    mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
        The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
            output is returned when `bool_masked_pos` has some of the patches masked.
    mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
        The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
            some of the tokens masked.
    Nloss	loss_infor   r   r    r!   r"   r#   image_masked_embeddingsimage_masked_outputtext_masked_embeddingstext_masked_outputmultimodal_masked_embeddingsmultimodal_masked_output
mim_logits
mlm_logits
itm_logitscontrastive_logits_per_imagecontrastive_logits_per_textmmm_image_logitsmmm_text_logitsr$   c                 T     g dt         fd j                         D              S )N)r!   r   r#   rQ   rO   rS   c              3   d   K   | ]'  }|vr|   nt        |      j                          ) y wNr'   )r*   r+   r,   transformer_outputss     r-   r.   z5FlavaForPreTrainingOutput.to_tuple.<locals>.<genexpr>   s4     sbc)< <T!W'$PQBRB[B[B]]sr/   r0   )r,   r^   s   `@r-   r)   z"FlavaForPreTrainingOutput.to_tuple   s(    
 sgkgpgpgrsssr4   )"r5   r6   r7   r8   rL   r   r9   r:   r;   rM   r>   r   r   r   r    r!   r"   r#   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r1   r   r)   r<   r4   r-   rK   rK      s   5n )-D(5$$
%,!I{!48hu00189=L(56=37OXe//078<K45<9=8E$5$56=>Bx :;B;?Xe&7&78?@D"<=D:>HU%6%67>?C!;<C@D (5+<+<"=DEIh'ABI.2J**+2.2J**+2.2J**+2@D (5+<+<"=D?C%*;*;!<C48hu001837OXe//07	t%* 	tr4   rK   c            	            e Zd ZdZddededdf fdZdej                  de	d	e	dej                  fd
Z
	 	 ddej                  deej                     dedej                  fdZ xZS )FlavaImageEmbeddingszb
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
    configuse_mask_tokenr$   Nc                    t         |           |xs |j                  }t        j                  t        j                  dd|j                              | _        |r4t        j                  t        j                  dd|j                              nd | _        t        |j                  |j                  |j                  |j                        | _        | j                  j                  }t        j                  t        j                  d|dz   |j                              | _        t        j                   |j"                        | _        |j                  | _        || _        y )Nr   )
image_size
patch_sizenum_channels	embed_dim)super__init__
mask_tokenr   	Parameterr9   zeroshidden_size	cls_tokenPatchEmbeddingsrd   re   rf   patch_embeddingsnum_patchesposition_embeddingsDropouthidden_dropout_probdropoutra   )r,   ra   rb   rq   	__class__s       r-   ri   zFlavaImageEmbeddings.__init__   s    '<6+<+<ekk!Q8J8J&KLQ_",,u{{1a9K9K'LMei /((((,,((	!
 ++77#%<<A{QPVPbPb0c#d zz&"<"<= ++r4   
embeddingsheightwidthc                    |j                   d   dz
  }| j                  j                   d   dz
  }t        j                  j	                         s||k(  r||k(  r| j                  S | j                  ddddf   }| j                  ddddf   }|j                   d   }|| j
                  z  }	|| j
                  z  }
t        |dz        }|j                  d|||      }|j                  dddd      }t        j                  j                  ||	|
fdd	
      }|j                  dddd      j                  dd|      }t        j                  ||fd      S )a   
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        r   Ng      ?r   r	      bicubicF)sizemodealign_cornersdim)shaperr   r9   jit
is_tracingre   r   reshapepermuter   
functionalinterpolateviewcat)r,   rw   rx   ry   rq   num_positionsclass_pos_embedpatch_pos_embedr   
new_height	new_widthsqrt_num_positionss               r-   interpolate_pos_encodingz-FlavaImageEmbeddings.interpolate_pos_encoding  s`    !&&q)A-0066q9A= yy##%+*F6UZ?+++221bqb59221ab59r"t.
T__,	&}c'9:)11!5GI[]`a)11!Q1=--33i(	 4 
 *11!Q1=BB1b#Nyy/?;CCr4   pixel_valuesbool_masked_posr   c                 V   |j                   \  }}}}| j                  ||      }|j                         \  }}	}
|| j                  j	                  ||	d      }|j                         dk(  r!|j                  |j                  d      d      }|j                  d      j                  |      }|d|z
  z  ||z  z   }| j                  j	                  |dd      }t        j                  ||fd      }|r|| j                  |||      z   }n|| j                  z   }| j                  |      }|S )N)r   r{   r	   r         ?r   r   )r   rp   r~   rj   expandr   r   	unsqueezetype_asrn   r9   r   r   rr   ru   )r,   r   r   r   
batch_sizerf   rx   ry   rw   seq_len_mask_tokensmask
cls_tokenss                 r-   forwardzFlavaImageEmbeddings.forward)  s4    3?2D2D/
L&%**<Rj*k
!+!2
GQ&//00WbIK""$)"1"6"67K7KA7NPR"S",,R088ED#sTz2[45GGJ ^^**:r2>
YY
J7Q?
 $#d&C&CJPVX]&^^J#d&>&>>J\\*-
r4   FNF)r5   r6   r7   r8   r   rI   ri   r9   Tensorintr   r   
BoolTensorr   __classcell__rv   s   @r-   r`   r`      s    /  RV &&D5<< &D &DUX &D]b]i]i &DV 7;).	ll "%"2"23 #'	
 
r4   r`   c            	            e Zd ZdZ	 	 	 	 ddedeeeeef   f   dedef fdZddej                  de
d	ej                  fd
Z xZS )ro   z#
    Image to Patch Embedding.
    rd   re   rf   rg   c                 V   t         |           t        |t        j                  j
                        s||f}t        |t        j                  j
                        s||f}|d   |d   z  |d   |d   z  z  }|| _        || _        || _        t        j                  ||||      | _        y )Nr   r   )kernel_sizestride)rh   ri   
isinstancecollectionsabcIterablerd   re   rq   r   Conv2d
projection)r,   rd   re   rf   rg   rq   rv   s         r-   ri   zPatchEmbeddings.__init__R  s     	*koo&>&>?$j1J*koo&>&>?$j1J!!}
15*Q-:VW=:XY$$&))L)\fgr4   r   r   r$   c                 8   |j                   \  }}}}|sV|| j                  d   k7  s|| j                  d   k7  r2t        d| d| d| j                  d    d| j                  d    d	      | j                  |      j	                  d      j                  dd      }|S )Nr   r   zInput image size (*z) doesn't match model (z).r|   )r   rd   
ValueErrorr   flatten	transpose)r,   r   r   r   rf   rx   ry   xs           r-   r   zPatchEmbeddings.forwarde  s    2>2D2D/
L&%'++u8J/J (% 9+,Adooa.@-AE  OOL)11!4>>q!Dr4   )      r	   i   r   )r5   r6   r7   r8   r   r   r1   ri   r9   r   rI   r   r   r   s   @r-   ro   ro   M  s}     24hh #uS#X./h 	h
 h&	ELL 	D 	]b]i]i 	r4   ro   c                        e Zd ZdZ fdZ	 	 	 ddeej                     deej                     deej                     fdZ xZ	S )FlavaTextEmbeddingszGConstruct the embeddings from word, position and token_type embeddings.c                 >   t         |           t        j                  |j                  |j
                  |j                        | _        t        j                  |j                  |j
                        | _	        t        j                  |j                  |j
                        | _        t        j                  |j
                  |j                        | _        t        j                  |j                        | _        t#        |dd      | _        | j'                  dt)        j*                  |j                        j-                  d      d       | j'                  d	t)        j.                  | j0                  j3                         t(        j4                  
      d       y )N)padding_idxepsposition_embedding_typeabsoluteposition_ids)r   r{   F)
persistenttoken_type_ids)dtype)rh   ri   r   	Embedding
vocab_sizerm   pad_token_idword_embeddingsmax_position_embeddingsrr   type_vocab_sizetoken_type_embeddings	LayerNormlayer_norm_epsrs   rt   ru   r(   r   register_bufferr9   aranger   rl   r   r~   longr,   ra   rv   s     r-   ri   zFlavaTextEmbeddings.__init__t  s/   !||F,=,=v?Q?Q_e_r_rs#%<<0N0NPVPbPb#c %'\\&2H2H&J\J\%]" f&8&8f>S>STzz&"<"<='.v7PR\']$ELL)G)GHOOPWXej 	 	
 	ekk$*;*;*@*@*B%**Ubg 	 	
r4   	input_idsr   r   c                 $   |j                         }|d   }|| j                  d d d |f   }|st        | d      r-| j                  d d d |f   }|j	                  |d   |      }|}n:t        j                  |t
        j                  | j                  j                        }| j                  |      }| j                  |      }	||	z   }
| j                  dk(  r| j                  |      }|
|z  }
| j                  |
      }
| j                  |
      }
|
S )Nr   r   r   )r   devicer   )r~   r   hasattrr   r   r9   rl   r   r   r   r   r   rr   r   ru   )r,   r   r   r   input_shape
seq_lengthbuffered_token_type_ids buffered_token_type_ids_expandedinputs_embedsr   rw   rr   s               r-   r   zFlavaTextEmbeddings.forward  s     nn& ^
,,Q^<L
 !t-.*.*=*=a*n*M'3J3Q3QR]^_R`bl3m0!A!&[

SWSdSdSkSk!l,,Y7 $ : :> J"%::
'':5"&":":<"H--J^^J/
\\*-
r4   )NNN)
r5   r6   r7   r8   ri   r   r9   r   r   r   r   s   @r-   r   r   q  sR    Q
* -115/3	 ELL)  !.  u||,	 r4   r   c                        e Zd Zdeddf fdZ	 	 	 d
dej                  deej                     deej                     dede	e
ej                  ej                  f   e
ej                     f   f
d	Z xZS )FlavaSelfAttentionra   r$   Nc                    t         |           |j                  |j                  z  dk7  r2t	        |d      s&t        d|j                   d|j                   d      |j                  | _        t        |j                  |j                  z        | _        | j                  | j                  z  | _        t        j                  |j                  | j                  |j                        | _        t        j                  |j                  | j                  |j                        | _        t        j                  |j                  | j                  |j                        | _        t        j                  |j                         | _        y )Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .bias)rh   ri   rm   num_attention_headsr   r   r   attention_head_sizeall_head_sizer   Linearqkv_biasquerykeyvaluers   attention_probs_dropout_probru   r   s     r-   ri   zFlavaSelfAttention.__init__  s.    : ::a?PVXhHi"6#5#5"6 7334A7 
 $*#=#= #&v'9'9F<V<V'V#W !558P8PPYYv1143E3EFOO\
99V//1C1C&//ZYYv1143E3EFOO\
zz&"E"EFr4   hidden_statesattention_mask	head_maskoutput_attentionsc                    |j                   \  }}}| j                  |      j                  |d| j                  | j                        j                  dd      }| j                  |      j                  |d| j                  | j                        j                  dd      }	| j                  |      j                  |d| j                  | j                        j                  dd      }
t        j                  ||	j                  dd            }|t        j                  | j                        z  }|||z   }t        j                  j                  |d      }| j                  |      }|||z  }t        j                  ||
      }|j!                  dddd      j#                         }|j%                         d d | j&                  fz   } |j                  | }|r||f}|S |f}|S )Nr{   r   r|   r   r   r	   )r   r   r   r   r   r   r   r   r9   matmulmathsqrtr   r   softmaxru   r   
contiguousr~   r   )r,   r   r   r   r   r   r   r   query_layer	key_layervalue_layerattention_scoresattention_probscontext_layernew_context_layer_shapeoutputss                   r-   r   zFlavaSelfAttention.forward  s    %2$7$7!
JJJ}%T*b$":":D<T<TUYq!_ 	 HH]#T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 !<<Y5H5HR5PQ+dii8P8P.QQ%/.@ --//0@b/I ,,7  -	9O_kB%--aAq9DDF"/"4"4"6s";t?Q?Q>S"S***,CD6G=/2 O\M]r4   NNF)r5   r6   r7   FlavaPossibleConfigsri   r9   r   r   rI   r   r1   r   r   r   s   @r-   r   r     s    G3 G G* 26,0"'3||3 !.3 ELL)	3
  3 
uU\\5<</0%2EE	F3r4   r   c                   |     e Zd ZdZdeddf fdZdej                  dej                  dej                  fdZ xZ	S )	FlavaSelfOutputz
    The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
    models), due to the layernorm applied before each block.
    ra   r$   Nc                     t         |           t        j                  |j                  |j                        | _        t        j                  |j                        | _        y r]   )	rh   ri   r   r   rm   densers   rt   ru   r   s     r-   ri   zFlavaSelfOutput.__init__  sB    YYv1163E3EF
zz&"<"<=r4   r   input_tensorc                 J    | j                  |      }| j                  |      }|S r]   r  ru   r,   r   r  s      r-   r   zFlavaSelfOutput.forward  s$    

=1]3r4   )
r5   r6   r7   r8   r   ri   r9   r   r   r   r   s   @r-   r  r    sE    
>3 > >
U\\  RWR^R^ r4   r  c                        e Zd Zdeddf fdZdee   ddfdZ	 	 	 ddej                  de
ej                     d	e
ej                     d
edeeej                  ej                  f   eej                     f   f
dZ xZS )FlavaAttentionra   r$   Nc                     t         |           t        |      | _        t	        |      | _        t               | _        y r]   )rh   ri   r   	attentionr  outputsetpruned_headsr   s     r-   ri   zFlavaAttention.__init__  s0    +F3%f-Er4   headsc                 >   t        |      dk(  ry t        || j                  j                  | j                  j                  | j
                        \  }}t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _	        t        | j                  j                  |d      | j                  _        | j                  j                  t        |      z
  | j                  _        | j                  j                  | j                  j                  z  | j                  _        | j
                  j                  |      | _        y )Nr   r   r   )lenr   r  r   r   r  r   r   r   r   r  r  r   union)r,   r  indexs      r-   prune_headszFlavaAttention.prune_heads  s   u:?74>>55t~~7Y7Y[_[l[l
u
  2$..2F2FN/0B0BEJ1$..2F2FN.t{{/@/@%QO .2^^-O-ORUV[R\-\*'+~~'I'IDNNLnLn'n$ --33E:r4   r   r   r   r   c                 l    | j                  ||||      }| j                  |d   |      }|f|dd  z   }|S N)r   r   r   r   r   )r  r  )r,   r   r   r   r   self_outputsattention_outputr   s           r-   r   zFlavaAttention.forward  sQ     ~~.Iar & 
  ;;|AF#%QR(88r4   r   )r5   r6   r7   r   ri   r  r   r  r9   r   r   rI   r   r1   r   r   r   s   @r-   r
  r
    s    "3 " ";S ;d ;* 26,0"'|| !. ELL)	
   
uU\\5<</0%2EE	Fr4   r
  c                   `     e Zd Zdeddf fdZdej                  dej                  fdZ xZS )FlavaIntermediatera   r$   Nc                    t         |           t        j                  |j                  |j
                        | _        t        |j                  t              rt        |j                     | _        y |j                  | _        y r]   )rh   ri   r   r   rm   intermediate_sizer  r   
hidden_actstrr
   intermediate_act_fnr   s     r-   ri   zFlavaIntermediate.__init__0  s]    YYv1163K3KL
f''-'-f.?.?'@D$'-'8'8D$r4   r   c                 J    | j                  |      }| j                  |      }|S r]   )r  r   r,   r   s     r-   r   zFlavaIntermediate.forward9  s&    

=100?r4   	r5   r6   r7   r   ri   r9   r   r   r   r   s   @r-   r  r  /  s2    93 9 9U\\ ell r4   r  c                   x     e Zd Zdeddf fdZdej                  dej                  dej                  fdZ xZS )FlavaOutputra   r$   Nc                     t         |           t        j                  |j                  |j
                        | _        t        j                  |j                        | _	        y r]   )
rh   ri   r   r   r  rm   r  rs   rt   ru   r   s     r-   ri   zFlavaOutput.__init__A  sB    YYv779K9KL
zz&"<"<=r4   r   r  c                 T    | j                  |      }| j                  |      }||z   }|S r]   r  r  s      r-   r   zFlavaOutput.forwardG  s.    

=1]3%4r4   r#  r   s   @r-   r%  r%  @  s@    >3 > >U\\  RWR^R^ r4   r%  c                        e Zd ZdZdeddf fdZ	 	 	 ddej                  deej                     deej                     d	e	de
eej                  ej                  f   eej                     f   f
d
Z xZS )
FlavaLayerz?This corresponds to the Block class in the timm implementation.ra   r$   Nc                 r   t         |           |j                  | _        d| _        t	        |      | _        t        |      | _        t        |      | _	        t        j                  |j                  |j                        | _        t        j                  |j                  |j                        | _        y )Nr   r   )rh   ri   chunk_size_feed_forwardseq_len_dimr
  r  r  intermediater%  r  r   r   rm   r   layernorm_beforelayernorm_afterr   s     r-   ri   zFlavaLayer.__init__S  s    '-'E'E$'/-f5!&) !#V-?-?VEZEZ [!||F,>,>FDYDYZr4   r   r   r   r   c                     | j                  | j                  |      |||      }|d   }|dd  }||z   }| j                  |      }| j                  |      }| j	                  ||      }|f|z   }|S r  )r  r.  r/  r-  r  )	r,   r   r   r   r   self_attention_outputsr  r   layer_outputs	            r-   r   zFlavaLayer.forward_  s     "&!!-0)/	 "0 "
 2!4(, )=8 ++M:((6 {{<?/G+r4   r   )r5   r6   r7   r8   r   ri   r9   r   r   rI   r   r1   r   r   r   s   @r-   r)  r)  P  s    I
[3 
[ 
[ 26,0"'|| !. ELL)	
   
uU\\5<</0%2EE	Fr4   r)  c                        e Zd Zdeddf fdZ	 	 	 	 	 ddej                  deej                     deej                     ded	ed
ede	e
ef   fdZ xZS )FlavaEncoderra   r$   Nc                     t         |           || _        t        j                  t        |j                        D cg c]  }t        |       c}      | _        d| _	        y c c}w r   )
rh   ri   ra   r   
ModuleListrangenum_hidden_layersr)  layergradient_checkpointing)r,   ra   r   rv   s      r-   ri   zFlavaEncoder.__init__  sN    ]]fF^F^@_#`1Jv$6#`a
&+# $as   A#r   r   r   r   output_hidden_statesreturn_dictc                    |rdnd }|rdnd }t        | j                        D ]2  \  }	}
|r||fz   }|||	   nd } |
||||      }|d   }|s*||d   fz   }4 |r||fz   }|st        d |||fD              S t        |||      S )Nr<   r   r   c              3   &   K   | ]	  }||  y wr]   r<   )r*   rH   s     r-   r.   z'FlavaEncoder.forward.<locals>.<genexpr>  s     mq_`_lm   )last_hidden_stater   
attentions)	enumerater9  r1   r   )r,   r   r   r   r   r;  r<  all_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputss                r-   r   zFlavaEncoder.forward  s     #7BD$5b4(4 	POA|#$58H$H!.7.CilO(YjkM)!,M &9]1=M<O&O#	P   1]4D Dm]4EGZ$[mmm+;LYl
 	
r4   )NNFFT)r5   r6   r7   r   ri   r9   r   r   rI   r   r1   r   r   r   r   s   @r-   r4  r4  ~  s    ,{ ,t , 26,0"'%*  
|| 
 !. 
 ELL)	 

   
 # 
  
 
uo%	& 
r4   r4  c                   D     e Zd Zdef fdZdej                  fdZ xZS )FlavaPoolerra   c                     t         |           t        j                  |j                  |j                        | _        t        j                         | _        y r]   )rh   ri   r   r   rm   r  Tanh
activationr   s     r-   ri   zFlavaPooler.__init__  s9    YYv1163E3EF
'')r4   r   c                 \    |d d df   }| j                  |      }| j                  |      }|S Nr   )r  rM  )r,   r   first_token_tensorpooled_outputs       r-   r   zFlavaPooler.forward  s6     +1a40

#566r4   r#  r   s   @r-   rJ  rJ    s     $3 $
U\\ r4   rJ  c                   x    e Zd ZU eed<   dZdZdeej                  ej                  ej                  f   ddfdZy)FlavaPreTrainedModelra   flavaTmoduler$   Nc                    t        |t        j                  t        j                  f      rm|j                  j
                  j                  d| j                  j                         |j                  %|j                  j
                  j                          yyt        |t        j                        rz|j                  j
                  j                  d| j                  j                         |j                  2|j                  j
                  |j                     j                          yyt        |t        j                        rJ|j                  j
                  j                          |j                  j
                  j                  d       yt        |t              r%|j                  j
                  j                          yt        |t               rz|j"                  j
                  j                          |j$                  j
                  j                          |j&                  %|j&                  j
                  j                          yyt        |t(              r2|j*                  r%|j"                  j
                  j                          yyt        |t,              r:|j.                  j
                  j                  | j                  j0                         yy)zInitialize the weightsg        )meanstdNr   )r   r   r   r   weightdatanormal_ra   initializer_ranger   zero_r   r   r   fill_FlavaMaskedPredictionHeadr`   rn   rr   rj   FlavaMultimodalModeluse_cls_token
FlavaModellogit_scalelogit_scale_init_value)r,   rU  s     r-   _init_weightsz"FlavaPreTrainedModel._init_weights  s   fryy"))45 MM&&CT[[5R5R&S{{&  &&( '-MM&&CT[[5R5R&S!!-""6#5#56<<> .-KK""$MM$$S) 9:KK""$ 45!!'')&&++113  ,!!&&,,. - 45##  %%++- $
+##))$++*L*LM ,r4   )r5   r6   r7   r   r;   base_model_prefixsupports_gradient_checkpointingr   r   r   r   r   re  r<   r4   r-   rS  rS    sC    &*#NE"))RYY*L$M NRV Nr4   rS  c                   p    e Zd ZU eed<   dZdZddedef fdZde	j                  fdZde	j                  fd	Zd
eeee   f   ddfdZe	 	 	 	 	 	 	 	 ddeej(                     deej*                     dee   deej(                     deej(                     dee   dee   dee   deeef   fd       Z xZS )FlavaImageModelra   zflava.image_modelr   add_pooling_layerc                    t         |   |       || _        t        |      | _        t        |      | _        t        j                  |j                  |j                        | _        |rt        |      nd| _        | j                          yv
        add_pooling_layer (bool, *optional*, defaults to `True`):
            Whether to add a pooling layer
        r   N)rh   ri   ra   r`   rw   r4  encoderr   r   rm   r   	layernormrJ  pooler	post_initr,   ra   rj  rv   s      r-   ri   zFlavaImageModel.__init__  si    
 	 .v6#F+f&8&8f>S>ST->k&)Dr4   r$   c                 .    | j                   j                  S r]   rw   rp   r3   s    r-   get_input_embeddingsz$FlavaImageModel.get_input_embeddings  s    ///r4   r   c                 &    || j                   _        y r]   rt  r,   r   s     r-   set_input_embeddingsz$FlavaImageModel.set_input_embeddings  s    +0(r4   heads_to_pruneNc                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 yz
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        Nitemsrn  r9  r  r  r,   ry  r9  r  s       r-   _prune_headszFlavaImageModel._prune_heads  E    
 +002 	CLE5LLu%//;;EB	Cr4   r   r   r   r   r   r;  r<  c	                 "   ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|t	        d      | j                  || j                   j                        }| j                  |||      }	| j                  |	|||||      }
|
d   }| j                  |      }| j                  | j                  |      nd}|s
||f|
dd z   S t        |||
j                  |
j                        S )z
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        Nz You have to specify pixel_values)r   r   r   r   r   r;  r<  r   r   r@  pooler_outputr   rA  )ra   r   r;  use_return_dictr   get_head_maskr8  rw   rn  ro  rp  r   r   rA  )r,   r   r   r   r   r   r   r;  r<  embedding_outputencoder_outputssequence_outputrQ  s                r-   r   zFlavaImageModel.forward   s8     2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]?@@ &&y$++2O2OP	??/Tl + 
 ,,)/!5# ' 
 *!,..98<8OO4UY#]3oab6III)-')77&11	
 	
r4   TNNNNNNNN)r5   r6   r7   r   r;   rf  main_input_namerI   ri   r   Moduleru  rx  dictr   listr  r   r   r9   r   r   r   r1   r   r   r   r   s   @r-   ri  ri    s2   +$O/ D "0bii 01")) 1C4T#Y+? CD C  046:3715,0,0/3&*7
u||,7
 "%"2"237
 #+4.	7

 !.7
 ELL)7
 $D>7
 'tn7
 d^7
 
u00	17
 7
r4   ri  c                   l    e Zd ZU eed<   dZddedef fdZdefdZ	de
j                  fdZd	eeee   f   dd
fdZe	 	 	 	 	 	 	 	 ddeej(                     deej(                     deej(                     deej(                     deej(                     dee   dee   dee   deeef   fd       Z xZS )FlavaTextModelra   zflava.text_modelrj  c                    t         |   |       || _        t        |      | _        t        |      | _        t        j                  |j                  |j                        | _        |rt        |      nd| _        | j                          yrl  )rh   ri   ra   r   rw   r4  rn  r   r   rm   r   ro  rJ  rp  rq  rr  s      r-   ri   zFlavaTextModel.__init__A  si    
 	 -f5#F+f&8&8f>S>ST->k&)Dr4   r$   c                 .    | j                   j                  S r]   rw   r   r3   s    r-   ru  z#FlavaTextModel.get_input_embeddingsQ  s    ...r4   r   c                 &    || j                   _        y r]   r  rw  s     r-   rx  z#FlavaTextModel.set_input_embeddingsT  s    */'r4   ry  Nc                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 yr{  r|  r~  s       r-   r  zFlavaTextModel._prune_headsW  r  r4   r   r   r   r   r   r   r;  r<  c	                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|t	        d      |j                         }	|!t        j                  |	|j                        }| j                  || j                   j                        }| j                  ||	|j                        }
| j                  |||      }| j                  ||
||||      }|d   }| j                  |      }| j                  | j                  |      nd}|s
||f|dd z   S t!        |||j"                  |j$                        S )	a  
        input_ids (`torch.LongTensor` of shape `(batch_size, text_seq_length)`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
            IDs?](../glossary#input-ids)
        token_type_ids (`torch.LongTensor` of shape `(batch_size, text_seq_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
        NzYou have to specify input_idsr   )r   r   r   r  r   r   r  )ra   r   r;  r  r   r~   r9   onesr   r  r8  get_extended_attention_maskrw   rn  ro  rp  r   r   rA  )r,   r   r   r   r   r   r   r;  r<  r   extended_attention_maskr  r  r  rQ  s                  r-   r   zFlavaTextModel.forward_  s   0 2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]<==nn&!"ZZI<L<LMN &&y$++2O2OP	040P0PK)9)91
  ??)% + 
 ,,2/!5# ' 
 *!,..98<8OO4UY#]3oab6III)-')77&11	
 	
r4   r  r  )r5   r6   r7   r   r;   rf  rI   ri   ro   ru  r   r  rx  r  r   r  r  r   r   r9   r   r   r1   r   r   r   r   s   @r-   r  r  ;  s6   * 4  /o /0")) 0C4T#Y+? CD C  -11515/3,0,0/3&*I
ELL)I
 !.I
 !.	I

 u||,I
 ELL)I
 $D>I
 'tnI
 d^I
 
u00	1I
 I
r4   r  c                        e Zd ZU eed<   dZdZddef fdZdee	e
e	   f   ddfdZe	 	 	 	 	 ddej                  d	eej                     d
eej                     dee   dee   dee   deeef   fd       Z xZS )r`  ra   zflava.multimodal_modelr   c                    t         |   |       || _        | j                  j                  | _        | j                  r9t	        j
                  t        j                  dd|j                              | _	        t        |      | _        t	        j                  |j                  |j                        | _        |rt        |      nd| _        | j#                          y)rm  r   r   N)rh   ri   ra   ra  r   rk   r9   rl   rm   rn   r4  rn  r   r   ro  rJ  rp  rq  rr  s      r-   ri   zFlavaMultimodalModel.__init__  s    
 	 ![[66\\%++aF<N<N*OPDN#F+f&8&8f>S>ST->k&)Dr4   ry  r$   Nc                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 yr{  r|  r~  s       r-   r  z!FlavaMultimodalModel._prune_heads  r  r4   r   r   r   r;  r<  c                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|j	                         \  }}}	| j
                  r;| j                  j                  |dd      }
t        j                  |
|fd      }|dz  }|#t        j                  ||f|j                        }| j                  || j                   j                        }| j                  |||f|j                        }| j                  ||||||      }|d   }| j!                  |      }| j"                  | j#                  |      nd}|s
||f|dd z   S t%        |||j&                  |j(                        S )	z
        hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
            The concatenated hidden states of unimodal encoders.
        Nr{   r   r   r  r  r   r  )ra   r   r;  r  r~   ra  rn   r   r9   r   r  r   r  r8  r  rn  ro  rp  r   r   rA  )r,   r   r   r   r   r;  r<  r   r   r   r   r  r  r  rQ  s                  r-   r   zFlavaMultimodalModel.forward  s    2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]$1$6$6$8!
J..z2rBJ!IIz=&AqIM!OJ!"ZZZ(@I]I]^N &&y$++2O2OP	040P0PZ4m6J6J1
 ,,2/!5# ' 
 *!,..98<8OO4UY#]3oab6III)-')77&11	
 	
r4   r  )NNNNN)r5   r6   r7   r   r;   rf  r  ri   r  r   r  r  r   r9   r   r   rI   r   r1   r   r   r   r   s   @r-   r`  r`    s    !!0%O4 $C4T#Y+? CD C  26,0,0/3&*;
||;
 !.;
 ELL)	;

 $D>;
 'tn;
 d^;
 
u00	1;
 ;
r4   r`  c                       e Zd ZU eed<   def fdZe	 	 	 	 	 	 	 ddeej                     deej                     deej                     deej                     dee
   dee
   d	ee
   d
ej                  fd       Ze	 	 	 	 	 	 	 	 ddeej                     deej                     dee
   deej                     deej                     dee
   dee
   d	ee
   d
ej                  fd       Ze	 	 	 	 	 	 	 	 	 	 	 ddeej                     deej                     deej                     deej                     deej                     deej                     deej                     dee
   dee
   de
d	ee
   d
eeef   fd       Z xZS )rb  ra   c                    t         |   |       t        |j                  t              s"t        dt        |j                         d      t        |j                  t              s"t        dt        |j                         d      t        |j                  t              s%t        ddt        |j                         dz         |j                  }|j                  }|j                  }|j                  | _        |j                  | _        |j                  | _        |j                  | _        t!        |      | _        t%        |      | _        t)        |      | _        t-        j.                  | j                  | j                        | _        t-        j.                  | j                  | j                        | _        t-        j4                  t7        j8                  | j:                  j<                              | _        t-        j.                  | j                  | j                        | _         t-        j.                  | j                  | j                        | _!        | jE                          y )NzLconfig.text_config is expected to be of type FlavaTextConfig but is of type r   zNconfig.image_config is expected to be of type FlavaImageConfig but is of type zMconfig.multimodal_config is expected to be of type FlavaMultimodalConfig but zis of type )#rh   ri   r   text_configr   	TypeErrortypeimage_configr   multimodal_configr   projection_dimrm   text_hidden_sizeimage_hidden_sizemm_hidden_sizer  
text_modelri  image_modelr`  multimodal_modelr   r   image_projectiontext_projectionrk   r9   tensorra   rd  rc  image_to_mm_projectiontext_to_mm_projectionrq  )r,   ra   r  r  r  rv   s        r-   ri   zFlavaModel.__init__  s    &,,o>++,-Q0 
 &--/?@,,-.a1 
 &224IJ_V%=%= >?qAB 
 ((**"44$33 + 7 7!-!9!9/;;(5*<8 45F G "		$*@*@$BUBU V!yy)>)>@S@ST<<T[[5W5W(XY&(ii0F0FH[H[&\#%'YYt/D/DdFYFY%Z"r4   r   r   r   r   r   r;  r<  r$   c           	      b    | j                  |||||||      }|d   }	| j                  |	      }
|
S )a  
        input_ids (`torch.LongTensor` of shape `(batch_size, text_seq_length)`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
            IDs?](../glossary#input-ids)
        token_type_ids (`torch.LongTensor` of shape `(batch_size, text_seq_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)

        Returns:
            text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
            applying the projection layer to the pooled output of [`FlavaTextModel`].

        Examples:

        ```python
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("{0}")
        >>> processor = AutoProcessor.from_pretrained("{0}")

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
        ... )
        >>> text_features = model.get_text_features(**inputs)
        ```
        )r   r   r   r   r   r;  r<  r   )r  r  )r,   r   r   r   r   r   r;  r<  text_outputsrQ  text_featuress              r-   get_text_featureszFlavaModel.get_text_features;  sN    R ))%/!5# ' 
 %Q,,];r4   r   r   r   r   c	           
      d    | j                  ||||||||      }	|	d   }
| j                  |
      }|S )a  
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        Returns:
            image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
            applying the projection layer to the pooled output of [`FlavaImageModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("{0}")
        >>> processor = AutoProcessor.from_pretrained("{0}")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> image_features = model.get_image_features(**inputs)
        ```
        )r   r   r   r   r   r;  r   r<  r   )r  r  )r,   r   r   r   r   r   r   r;  r<  image_outputsrQ  image_featuress               r-   get_image_featureszFlavaModel.get_image_featuress  sT    L ((%+)/!5%=# ) 	
 &a(..}=r4   image_attention_maskskip_multimodal_encoderc           	         ||n| j                   j                  }|
st        d      d}d}d}d}|5| j                  ||||	|
|      }|d   |d   }}| j	                  |d         }d}d}d}d}|6| j                  |||||	|
|      }|d   |d   }}| j                  |d         }d}d}|||s|g|j                  \  }}}| j                  j                  r|dz  }t        j                  |||j                  	      }t        j                  ||gd
      }nd}t        j                  ||gd
      }| j                  |||      }|d   }|s||||||fS t        ||||||      S )a	  
        input_ids (`torch.LongTensor` of shape `(batch_size, image_num_patches + text_seq_len)`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
            IDs?](../glossary#input-ids)
        token_type_ids (`torch.LongTensor` of shape `(batch_size, image_num_patches + text_seq_len)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        image_attention_mask (`torch.Tensor` of shape `(batch_size, image_num_patches)`, *optional*):
            Mask to avoid performing attention on padding pixel values for image inputs. Mask values selected in `[0, 1]`:
            - 1 for pixel values that are real (i.e., **not masked**),
            - 0 for pixel values that are padding (i.e., **masked**).
        skip_multimodal_encoder (*bool*, *optional*):
            Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("facebook/flava-full")
        >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)

        >>> outputs = model(**inputs)

        >>> image_embeddings = outputs.image_embeddings
        >>> text_embeddings = outputs.text_embeddings
        >>> multimodal_embeddings = outputs.multimodal_embeddings

        >>> outputs.image_embeddings.shape
        torch.Size([1, 197, 768])

        >>> text_embeddings.shape
        torch.Size([1, 7, 768])

        >>> multimodal_embeddings.shape
        torch.Size([1, 205, 768])
        ```
        NzRFLAVA model requires hidden states to work. Please set `output_hidden_states=True`)r   r   r   r   r;  r<  r   r|   r{   )r   r   r   r   r   r;  r<  r   r  r   )r   r<  )r   r   r    r!   r"   r#   )ra   r<  r   r  r  r  r  r   r  ra  r9   r  r   r   r   )r,   r   r   r   r   r   r   r  r  r   r;  r<  r   image_statesimage_mm_projectionr   r    text_statestext_mm_projectionr!   r"   r#   r   r   r   attention_mask_imageattention_multimodalmultimodal_inputs                               r-   r   zFlavaModel.forward  s
   F &1%<k$++BYBY#qrr"#++) /3"3%9' , L .:!_l1ol"&"="=l2>N"O! //#-)-"3%9' * K ,7q>;q>[O!%!;!;KO!L $ */A/MVm))<)B)B&
GQ((66qLG',zz*gNaNhNh'i$',yy2F1W]^'_$'+$$yy*=?Q)RXYZ $ 5 5 1ES^ !6 ! %6a$8! %!   -%+#"7/
 	
r4   )NNNNNNNr  )NNNNNNNNNTN)r5   r6   r7   r   r;   ri   r   r   r9   r   rI   r:   r  r   r  
LongTensorr   r1   r%  r   r   r   s   @r-   rb  rb    s   ){ )V  -11515/3,0/3&*5ELL)5 !.5 !.	5
 u||,5 $D>5 'tn5 d^5 
		5 5n  046:3715,0,0/3&*3u||,3 "%"2"233 #+4.	3
 !.3 ELL)3 $D>3 'tn3 d^3 
		3 3j  1548151526377;26,0%)&*K
E,,-K
 u001K
 !.	K

 !.K
 "%,,/K
 u//0K
 'u||4K
 "*$K
 $D>K
 #K
 d^K
 
uk!	"K
 K
r4   rb  c                   `     e Zd Zdedef fdZdej                  dej                  fdZ xZS )FlavaImageCodebookResPathin_sizeout_sizec                    t         |           |dz  }t               }t        j                         |d<   t        j
                  ||dd      |d<   t        j                         |d<   t        j
                  ||dd      |d<   t        j                         |d	<   t        j
                  ||dd      |d
<   t        j                         |d<   t        j
                  ||dd      |d<   t        j                  |      | _        y )N   relu_1r	   r   r   paddingconv_1relu_2conv_2relu_3conv_3relu_4r   conv_4)rh   ri   r   r   ReLUr   
Sequentialpath)r,   r  r  kwargshid_sizer  rv   s         r-   ri   z"FlavaImageCodebookResPath.__init__9  s    q=}X7H!QOXX8X1aPXX8X1aPXX8X1aPXMM$'	r4   r   r$   c                 $    | j                  |      S r]   )r  r,   r   s     r-   r   z!FlavaImageCodebookResPath.forwardI  s    yy|r4   	r5   r6   r7   r   ri   r9   r   r   r   r   s   @r-   r  r  8  s1    ( (s (  %,, r4   r  c                   d     e Zd Zdededef fdZdej                  dej                  fdZ xZS )FlavaImageCodebookBlockr  r  
num_layersc                     t         |           d|dz  z  | _        ||k7  rt        j                  ||dd      | _        nt        j                         | _        t        ||      | _        y )Nr   r|   r   r  )	rh   ri   	post_gainr   r   id_pathIdentityr  res_path)r,   r  r  r  r  rv   s        r-   ri   z FlavaImageCodebookBlock.__init__N  sW    j!m,h99WhAqQDL;;=DL1'8Dr4   r   r$   c                 b    | j                  |      | j                  | j                  |      z  z   S r]   )r  r  r  r  s     r-   r   zFlavaImageCodebookBlock.forwardZ  s'    ||A$--2B!BBBr4   r  r   s   @r-   r  r  M  s?    
E 
Es 
E 
EC C%,, Cr4   r  c                   n     e Zd Zd
dededededef
 fdZdej                  dej                  fd	Z xZ	S )FlavaImageCodebookLayerGroup
num_blocksr  r  r  use_poolc                 $   t         |           t               }t        |      D ]4  }|dk(  rt	        |||      |d|dz    <   t	        |||      |d|dz    <   6 |rt        j                  d      |d<   t        j                  |      | _        y )Nr   block_r   r|   )r   pool)	rh   ri   r   r7  r  r   	MaxPool2dr  group)	r,   r  r  r  r  r  blocksrE  rv   s	           r-   ri   z%FlavaImageCodebookLayerGroup.__init___  s    z" 	cAAv+B7HV`+aAw'(+B8XWa+bAw'(		c \\a8F6N]]6*
r4   r   r$   c                 $    | j                  |      S r]   )r  r  s     r-   r   z$FlavaImageCodebookLayerGroup.forwardm  s    zz!}r4   r  )
r5   r6   r7   r   rI   ri   r9   r   r   r   r   s   @r-   r  r  ^  sH    +3 +C +# +QT +`d + %,, r4   r  a"  
    The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
    to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
    `get_codebook_indices` to get image tokens for an image.
    c                        e Zd ZU dZeed<   dZdZdedef fdZ	de
j                  de
j                  fdZde
j                  de
j                  fd	Zde
j                  de
j                  fd
Z xZS )FlavaImageCodebook ra   r   Fr  c                    t         |   |       || _        |j                  | _        |j                  | _        |j
                  | _        |j                  | _        |j                  | _        | j                  | j
                  z  }t               }t        j                         |d<   t        j                  d| j                  z  | j                  dd      |d<   t               }t        j                  | j                  d| j                  z  dd      |d	<   t        | j
                  |d| j                  z  d| j                  z        |d
<   t        | j
                  |d| j                  z  d| j                  z        |d<   t        | j
                  |d| j                  z  d| j                  z        |d<   t        | j
                  |d| j                  z  d| j                  z  d      |d<   t        j                  |      |d<   t        j                  |      | _        | j                          | j                  j                   r| j#                         D ]	  }d|_         y y )Nrelu   r   r   r  conv   r	   inputgroup_1r|   group_2r  group_3F)r  group_4r  )rh   ri   ra   
num_groupsinput_channelsnum_blocks_per_grouprm   r   r   r   r  r   r  r  r  rq  freeze
parametersrequires_grad)r,   ra   r  r  output_blocksr  paramrv   s          r-   ri   zFlavaImageCodebook.__init__  s   
 	  ++$33$*$?$?!!-- ++__t'@'@@
# "	f "		!d.>.>*>]^hi jf))D$7$7T=M=M9M[\fghw8%%z1t7G7G3GTM]M]I]
y 9%%z1t7G7G3GTM]M]I]
y 9%%z1t7G7G3GTM]M]I]
y 9%%z1t7G7G3GTM]M]I]hm
y ==7xmmF+;;* ,&+#, r4   r$   c                 t    dt          dt          d | j                  |      }t        j                  |d      S )Na)  
        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
                `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.

        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, FlavaImageCodebook

        >>> model = FlavaImageCodebook.from_pretrained("E")
        >>> image_processor = AutoImageProcessor.from_pretrained("a  ")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
        >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)

        >>> outputs = model.get_codebook_indices(**inputs)
        ```
        r   )axis)_CHECKPOINT_FOR_CODEBOOK_DOCr  r9   argmaxr,   r   z_logitss      r-   get_codebook_indicesz'FlavaImageCodebook.get_codebook_indices  sI    9 :V8V WCC_B` 
a		0 ;;|,||H1--r4   c                 \    | j                  |      } t        j                  d      |      S )Nr   r   )r  r   Softmaxr  s      r-   get_codebook_probsz%FlavaImageCodebook.get_codebook_probs  s&    ;;|, rzza **r4   c                 0   dt          dt          d t        |j                        dk7  rt        d|j                   d      |j                  d   | j                  k7  r(t        d|j                  d    d	| j                         | j                  |      S )
Na*  
        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
                `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, FlavaImageCodebook

        >>> model = FlavaImageCodebook.from_pretrained("r  a  ")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
        >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)

        >>> outputs = model(**inputs)
        >>> print(outputs.shape)
        (1, 196)
        ```
        r  zinput shape z
 is not 4dr   z
input has z channels but model built for )r
  r  r   r   r   r  )r,   r   s     r-   r   zFlavaImageCodebook.forward  s    9 :V8V WCC_B` a		6 |!!"a'|L,>,>+?zJKKa D$7$77z,*<*<Q*?)@@^_c_r_r^stuu{{<((r4   )r5   r6   r7   rf  r   r;   r  rg  r   ri   r9   r   r  r  r:   r   r   r   s   @r-   r  r  r  s     $$$O&+#*,(*, *,X. .%,, .8+u|| + + )E$5$5  )%,,  )r4   r  c                   $     e Zd Z fdZd Z xZS )FlavaPredictionHeadTransformc                 h   t         |           t        j                  |j                  |j                        | _        t        |j                  t              rt        |j                     | _
        n|j                  | _
        t        j                  |j                  |j                        | _        y )Nr   )rh   ri   r   r   rm   r  r   r  r  r
   transform_act_fnr   r   r   s     r-   ri   z%FlavaPredictionHeadTransform.__init__  s{    YYv1163E3EF
f''-$*6+<+<$=D!$*$5$5D!f&8&8f>S>STr4   c                 l    | j                  |      }| j                  |      }| j                  |      }|S r]   )r  r  r   r"  s     r-   r   z$FlavaPredictionHeadTransform.forward  s4    

=1--m<}5r4   r5   r6   r7   ri   r   r   r   s   @r-   r  r    s    Ur4   r  c                   ,     e Zd Zd fd	Zd Zd Z xZS )r_  c                 |   t         |           || _        t        |      | _        t        j                  |j                  |j                  d      | _	        t        j                  t        j                  |j                              | _        ||| j                  _        | j                  | j                  _        y )NFr   )rh   ri   ra   r  	transformr   r   rm   r   decoderrk   r9   rl   r   rY  )r,   ra   rY  rv   s      r-   ri   z"FlavaMaskedPredictionHead.__init__   s    5f=yy!3!3V5F5FUSLLV->->!?@	"(DLL !IIr4   c                 :    | j                   | j                  _         y r]   )r   r  r3   s    r-   _tie_weightsz&FlavaMaskedPredictionHead._tie_weights  s     IIr4   c                 J    | j                  |      }| j                  |      }|S r]   )r  r  r  s     r-   r   z!FlavaMaskedPredictionHead.forward  s"    NN1LLOr4   r]   )r5   r6   r7   ri   r  r   r   r   s   @r-   r_  r_    s    
&&r4   r_  c                   $     e Zd Z fdZd Z xZS )FlavaITMHeadc                     t         |           || _        t        |      | _        t        j                  |j                  d      | _        y )Nr|   )	rh   ri   ra   rJ  rp  r   r   rm   seq_relationshipr   s     r-   ri   zFlavaITMHead.__init__  s:    !&) "		&*<*<a @r4   c                 J    | j                  |      }| j                  |      }|S r]   )rp  r#  r  s     r-   r   zFlavaITMHead.forward  s$    KKN!!!$r4   r  r   s   @r-   r!  r!    s    Ar4   r!  c                   $     e Zd Z fdZd Z xZS )FlavaGlobalContrastiveHeadc                 R    t         |           || _        |j                  | _        y r]   )rh   ri   ra   global_backprop_contrastiver   s     r-   ri   z#FlavaGlobalContrastiveHead.__init__#  s#    +1+M+M(r4   c                     t        j                  |      }t         j                  j                         rt         j                  j	                         s8t        j
                  |j                  d      |j                        }|g}|g}n{|j                  d      }t         j                  j                         }	| j                  rgt         j                  j                  j                  j                  |      }t         j                  j                  j                  j                  |      }nt        |	      D 
cg c]  }
t        j                  |       }}
t        |	      D 
cg c]  }
t        j                  |       }}
t         j                  j                  ||       t         j                  j                  ||       |t         j                  j                         z  t        j
                  ||j                        z   }t        j                   |      }t        j                   |      }t        j"                  ||j%                  dd            |z  }t        j"                  ||j%                  dd            |z  }|||fS c c}
w c c}
w )Nr   r  r   )r9   expdistributedis_availableis_initializedr   r~   r   get_world_sizer(  r   r   
all_gatherr7  
zeros_likeget_rankr   r   r   )r,   r   r    rc  temperaturelabelsimage_embeddings_alltext_embeddings_alllocal_batch_size
world_sizer   logits_per_imagelogits_per_texts                r-   r   z"FlavaGlobalContrastiveHead.forward(  s   ii,  --/u7H7H7W7W7Y\\"2"7"7":CSCZCZ[F$4#5 #2"3/44Q7**99;J// (-'8'8';';'F'F'Q'QRb'c$&+&7&7&:&:&E&E&P&PQ`&a#SXYcSd'ea(8(8(I'e$'eSXYcSd&eau'7'78H'I&e#&e!!,,-ACST!!,,-@/R%(9(9(B(B(DDu|| )9)@)@H F  %yy)=>#ii(;< <<(8:M:W:WXY[\:]^all,,8L8V8VWXZ[8\]`kk&88 (f&es   9J$Jr  r   s   @r-   r&  r&  "  s    N
9r4   r&  zk
    The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
    c            (       ^    e Zd Zg dZddedeej                     f fdZde	j                  fdZe	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddee	j                     dee	j                     d	ee	j                     d
ee	j                     dee	j                     dee	j                     dee	j                     dee	j                     dee	j                     dee   dee	j                     dee	j                     dee	j                     dee   dedee   dee   deee	j                     ef   f$d       Z xZS )FlavaForPreTraining)zmmm_text_head.decoder.biaszmmm_image_head.decoder.biaszmlm_head.decoder.biaszmim_head.decoder.biasra   image_codebookc                 b   t         |   |       t        |      | _        || _        | j                  &|j
                  rt        |j                        | _        t        |j                        | _
        t        |j                        | _        t        |      | _        t        |j                        | _        t        |j                        | _        t#        |      | _        |j                  j&                  | _        |j                  j&                  | _        |j,                  | _        |j.                  | _        |j0                  | _        |j2                  | _        |j4                  | _        |j6                  | _        |j8                  | _        |j:                  | _        | j=                          y)z
        image_codebook ([`nn.Module`]):
            If passed, the image codebook will be set to this. Otherwise, it will be initialized using the
            image_codebook_config defined in the config first as the first parameter.
        N)rh   ri   rb  rT  r<  init_codebookr  image_codebook_configr_  r  mim_headr  mlm_headr!  itm_headmmm_image_headmmm_text_headr&  global_contrastive_headr   image_vocab_sizetext_vocab_size
mlm_weight
mim_weightglobal_contrastive_weightce_ignore_index
itm_weightmmm_image_weightmmm_text_weight skip_unmasked_multimodal_encoderrq  )r,   ra   r<  rv   s      r-   ri   zFlavaForPreTraining.__init__X  sQ    	 '
,&6+?+?"4V5Q5Q"RD 2&2E2EF1&2D2DE$V,78K8KL6v7I7IJ'A&'I$ & 3 3 > >%11<< ++ ++)/)I)I&%55 ++ & 7 7%55060W0W-r4   r   c                 n    |j                         dkD  r!|j                  |j                  d      d      }|S )Nr|   r   r{   )r   r   r~   r  s     r-   _resize_to_2dz!FlavaForPreTraining._resize_to_2d{  s,    557Q;qvvay"%Ar4   r   input_ids_maskedr   codebook_pixel_valuesr   r   r   r   r  rO  
mlm_labels
mim_labels
itm_labelsr   r;  r<  return_lossr$   c                    ||n| j                   j                  }||n| j                   j                  }|
|
n| j                  }
||t        j                  d       |}| j                  ||||||	|
||d
      }| j                  |||||	|||d	      }d}|j                  }|j                  }|j                  }|j                  }|j                  }dx}x}x}x}x}x}} dx}!x}"x}#}$dx}%x}&}'||C|A|r?| j                  t        d      |t        d      | j                  j                  |      }| j                  dkD  r|||}(|| j                  |      }| j                  |      }| j                   ||j#                  d      <   |(dd|j%                  d	       dddf   }(|j#                  | j                         })||)   }*|(|)ddf   }(| j'                  |(      }!|rjt(        j*                  j-                  |!j/                  d
| j0                        |*j/                  d
            }|| j                  z  }n| j'                  |(      }!| j2                  dkD  r|||}+|| j                  |      }|+dd|j%                  d	       dddf   }+|j#                  | j                         })||)   },|+|)ddf   }+| j5                  |+      }"|rjt(        j*                  j-                  |"j/                  d
| j6                        |,j/                  d
            }|| j2                  z  }n| j5                  |+      }"| j8                  dkD  r|| j;                  |      }%||j#                  d      }-t=        j>                  |-jA                         |-|-jC                  dg            }|r/t(        j*                  j-                  |%|      } | | j8                  z  } |||   }|||   }|
||   }||   }|| jD                  dkD  r|}(|j%                  d	      d	z
  }.|(dddd|.z   ddf   }(|| j                  |      }| j                  |      }| j                   ||j#                  d      <   |j#                  | j                         })||)   }*|(|)ddf   }(| jG                  |(      }$|rjt(        j*                  j-                  |$j/                  d
| j0                        |*j/                  d
            }|| jD                  z  }n| jG                  |(      }$|| jH                  dkD  r|}+|+dd|j%                  d	       dddf   }+|| j                  |      }|j#                  | j                         })||)   },|+|)ddf   }+| jK                  |+      }#|rjt(        j*                  j-                  |#j/                  d
| j6                        |,j/                  d
            }|| jH                  z  }n| jK                  |+      }#|l|i| jL                  dkD  rY| j                  jO                  |dddddf         }/t(        j*                  jQ                  |/d
      }/| j                  jS                  |dddddf         }0t(        j*                  jQ                  |0d
      }0| j                  jT                  jV                  jY                  tZ        t\               | j_                  |0|/| j                  jT                        \  }&}'}1||&|   }&|'|   }'|1|   }1|rWt(        j*                  j-                  |&|1      }2t(        j*                  j-                  |'|1      }3|2|3z   dz  }|| jL                  z  }ta        ||| |||      }4|r0|4jc                         s te        d |4jg                         D              }|s.||jh                  |jh                  jk                         nd||jl                  |jl                  jk                         nd|j                  |jn                  |jn                  jk                         nd||jh                  |jh                  jk                         nd||jl                  |jl                  jk                         nd||jn                  |jn                  jk                         nd|!|"|%|&|&|$|#f}5|r|4jc                         s||4f|5z   }5tq        d |5D              S ts        d%i d|d|4d|d|jh                  d|d|jl                  d|j                  d|jn                  d|d|jh                  d|d|jl                  d|d|jn                  d|!d|"d |%d!|&d"|'d#|$d$|#S )&a  
        input_ids (`torch.LongTensor` of shape `(batch_size, text_seq_len)`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
            IDs?](../glossary#input-ids)
        input_ids_masked (`torch.LongTensor` of shape `(batch_size, text_seq_len)`):
            Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
            to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
            [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
        codebook_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_image_patches, patch_size, patch_size, 3)`, *optional*):
            Pixel values for image patches that are used to compute the image codebook labels for masked image modeling.
        token_type_ids (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        image_attention_mask (`torch.FloatTensor` of shape `(batch_size, image_num_patches)`, *optional*):
            Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
            in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)
        skip_unmasked_multimodal_encoder (*bool*, *optional*):
            Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
            multimodal embeddings or outputs as of now.
        mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
            Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
            Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
            indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
            ..., text_config.vocab_size - 1]`.
        mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
            Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
            image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
            computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
            generated automatically using the image codebook assigned to the model. By default, it uses
            [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
        itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
            Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
            The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
        return_loss (`bool`, *optional*, default to None):
            Whether to return calculated loss or not.

        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import FlavaForPreTraining, AutoProcessor

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
        >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")

        >>> text = ["a photo of a cat"]

        >>> inputs = processor(
        ...     images=[image],
        ...     text=text,
        ...     return_masks=True,
        ...     return_codebook_pixels=True,
        ...     padding=True,
        ...     max_length=77,
        ...     return_tensors="pt",
        ... )


        >>> output = model(**inputs)
        ```
        Nz`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if you are doing inference on unmasked text...T)
r   r   r   r   r   r  r  r   r;  r<  )	r   r   r   r   r  r   r   r;  r<  z`return_loss` is set to True but the image codebook is not initialized and no `mim_labels`  have been passed. Reinstantiate the model with `init_codebook` set to True or pass in your custom `mim_labels`z`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. Call `AutoProcessor` with `return_codebook_pixels` set to Truer   r   r{   r|   r   )r?   r@   rA   rB   rC   rD   c              3   (   K   | ]
  }||nd  y wrO  r<   )r*   rL   s     r-   r.   z.FlavaForPreTraining.forward.<locals>.<genexpr>  s     _T%5T1<_s   c              3   &   K   | ]	  }||  y wr]   r<   )r*   r   s     r-   r.   z.FlavaForPreTraining.forward.<locals>.<genexpr>  s     8qai8r?  rL   rM   r   r   r    r!   r"   r#   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r<   ):ra   r  rW  rO  loggerwarningrT  r   r    r"   r<  RuntimeErrorr   r  rI  rQ  rK  ner~   r@  r   r   cross_entropyr   rF  rH  rA  rG  rL  rB  r9   whereanynewrM  rC  rN  rD  rJ  r  	normalizer  rc  rZ  clamp_LOGIT_SCALE_CLAMP_MINLOGIT_SCALE_CLAMP_MAXrE  r>   rG   sumrF   r   r)   r!   r#   r1   rK   )6r,   r   rR  r   rS  r   r   r   r   r  rO  rT  rU  rV  r   r;  r<  rW  flava_outputflava_masked_outputpos_maskr   r    rN   rP   rR   
total_lossmim_lossmlm_lossmmm_text_lossmmm_image_lossgc_lossitm_lossrT   rU   rZ   rY   rV   r8  r9  sequence_for_imagemasked_tokensmim_labels_filteredsequence_for_textmlm_labels_filtered	pos_pairs	end_indextext_embeddingimage_embedding	gc_labelsgc_loss_imagegc_loss_textflava_lossesr  s6                                                         r-   r   zFlavaForPreTraining.forward  s
   ~ &1%<k$++B]B]%0%<k$++BYBY 0; -66 	) #	(=NN?
  )zz%))%!5 %E/!5 " 
  #jj&%))!5+/!5 ) 

 '88&66"5"F"F!4!D!D':'P'P$aee
eXee=e>eGV^GKK
KZK/4D:>>
>% #.2N2Z!k&&.&; 
 )0$Y  "00EEF[\
 ??Q#:#FKgKo!8%!//
;
"&"4"4_"E7;7K7K
?--d34%7JOOA<N;N;PRS8S%T" *d.B.B C&0&?#%7q8H%I"!]]+=>
!}}::"D,A,ABDWD\D\]_D` H /H!]]+=>
 ??Q#9#EJfJn 6%!//
;
$5a*//!:L9L9NPQ6Q$R! *d.B.B C&0&?#$5mQ6F$G!!]]+<=
!}}::"D,@,@ACVC[C[\^C_ H /H!]]+<=
 ??Q#?#K'CDJ%&MM!,	 ;;y}}	9==RVQWCXY!}}:::zRH/H/;3OPX3Y0)!+H!5J)!+H!5J&5h&?O (38M8MPQ8Q!=/44Q7!;I!3Aq1y=7H!4K!L%!//
;
"&"4"4_"E7;7K7K
?--d34 *d.B.B C&0&?#%7q8H%I"#'#6#67I#J %']]%@%@(--b$2G2GHJ]JbJbceJf&N #d&;&;;N#'#6#67I#J  (38L8Lq8P < 1!6L6Q6QRS6T5T5VXY2Y Z%!//
;
 *d.B.B C&0&?#$5mQ6F$G!"&"4"45F"G$&MM$?$?',,R1E1EFH[H`H`acHd%M "T%9%99M"&"4"45F"G 'O,GDLjLjmnLn!ZZ771a8PQN]]44^4LN"jj99:J1aQR7:STO mm55o25NOJJ""''../DF[\;?;W;W1G1G<8oy
 ##3H#= "1(";%h/	 " ; ;<Li X!}}::?IV(<71<4999"&$"
 |446_I\I\I^__J 8D8Q8Q8]))224cg7C7O7O7[((113ae22=I=[=[=g..779mq'?R?_?_?k#0099;qu&>Q>]>]>i#//88:os,&88D $55>>@   +F. <#8#8#:   8F888( 

"
 .
 &22	

 ,
 %00
 #/"D"D
 +<<
 %<
 !4 @ @
 $:
  3>>
 *F
 &9%J%J
 "
  "!
" "#
$ *:%
& )8'
( .)
* ,+
 	
r4   r]   )NNNNNNNNNNNNNNTNN)r5   r6   r7   _tied_weights_keysr   r   r   r  ri   r9   r   rQ  r   r  r:   rI   r   r1   rK   r   r   r   s   @r-   r;  r;  J  s   !{ !HRYY<O !Fu|| 
  157;48=A151526377;;?-1-1-1,0%)&*&*%k
E,,-k
 #5#3#34k
 u001	k

  ((9(9:k
 !.k
 !.k
 "%,,/k
 u//0k
 'u||4k
 +34.k
 U\\*k
 U\\*k
 U\\*k
 $D>k
  #!k
" d^#k
$ d^%k
& 
uU\\"$==	>'k
 k
r4   r;  )r;  r  ri  rb  r`  rS  r  )Hr8   r   r   r   dataclassesr   typingr   r   r   r9   torch.utils.checkpointr   activationsr
   modeling_layersr   modeling_outputsr   r   modeling_utilsr   r   r   utilsr   r   r   r   configuration_flavar   r   r   r   r   
get_loggerr5   r[  r
  re  rf  r   r   r>   rK   r  r`   ro   r   r   r  r
  r  r%  r)  r4  rJ  rS  ri  r  r`  rb  r  r  r  r  r  r_  r!  r&  r;  __all__r<   r4   r-   <module>r     s2      # ! ' '    ! 9 K c c D D  
		H	%>   _.>@UUV  
{ 
 
< 
+  D Wt Wt Wtx_299 _H!bii !H6")) 6rF FRbii $'RYY 'T		 ""))  ++ +\'
299 '
T"))  N? N ND ]
* ]
 ]
@ m
) m
 m
` \
/ \
 \
~ h
% h
 h
V			 *Cbii C"299 ( r)- r)r)j299 "		 ,
299 
%9 %9P 
]
. ]

]
@r4   