
    rhTE                         d dl Z d dlmZmZmZ ddlmZmZ ddlm	Z	 ddl
mZ ddlmZ  ej                  e      Z G d	 d
e      Z G d de      Zdd
gZy)    N)AnyOptionalUnion   )PretrainedConfiglayer_type_validation)rope_config_validation)logging   )SiglipVisionConfigc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Ze	d        Z
e
j                  d        Z
 xZS )Gemma3TextConfigaN   
    This is the configuration class to store the configuration of a [`Gemma3TextModel`]. It is used to instantiate an Gemma3Text
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Gemma3Text-7B.
    e.g. [google/gemma3_text-7b](https://huggingface.co/google/gemma3_text-7b)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 262208):
            Vocabulary size of the Gemma3Text model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Gemma3TextModel`]
        hidden_size (`int`, *optional*, defaults to 2304):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 9216):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 26):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 256):
            The attention head dimension.
        hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
            if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        query_pre_attn_scalar (`float`, *optional*, defaults to 256):
            Scaling factor used on the attention scores
        sliding_window (`int`, *optional*, defaults to 4096):
            In Gemma3Text, every other layer uses sliding window attention. This is the size of the sliding window.
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        final_logit_softcapping (`float`, *optional*):
            Scaling factor when applying tanh softcapping on the logits.
        attn_logit_softcapping (`float`, *optional*):
            Scaling factor when applying tanh softcapping on the attention scores.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings used in global attention. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        rope_local_base_freq (float, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings for local attention.

    ```python
    >>> from transformers import Gemma3TextModel, Gemma3TextConfig
    >>> # Initializing a Gemma3Text gemma3_text-7b style configuration
    >>> configuration = Gemma3TextConfig()
    >>> # Initializing a model from the gemma3_text-7b style configuration
    >>> model = Gemma3TextModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    gemma3_textpast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 |   t        |   d||||d| || _        |	| _        || _        || _        || _        || _        || _        || _	        |
| _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        t1        |        |j3                  dd      | _        | j*                  Et7        | j                        D cg c]!  }t9        |dz   | j4                  z        rdnd# c}| _        t;        | j*                         y c c}w )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingssliding_window_pattern      sliding_attentionfull_attention )super__init__
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headshead_dimnum_key_value_headsinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropouthidden_activationquery_pre_attn_scalarsliding_windowfinal_logit_softcappingattn_logit_softcappinglayer_typesrope_local_base_freqrope_scalingr	   get_sliding_window_patternrangeboolr   )selfr'   r)   r*   r+   r,   r.   r-   r5   r(   r/   r0   r1   r   r   r   r   r2   r3   r4   r6   r7   r:   r8   r9   r<   r;   kwargsi	__class__s                                /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/gemma3/configuration_gemma3.pyr&   zGemma3TextConfig.__init__   s_   < 	 	
%%% 3		

 	
 %'>$&!2!2#6  #6 !2("$,!2!2%:",'>$&<#&$8!(t$ (.zz2JA'N$# t556  (,QUd6R6R,R'S#Yii D 	d../	 s   5&D9c                 N    t        j                  dt               | j                  S )NzTThe `sliding_window_pattern` attribute is deprecated and will be removed in v4.55.0.)warningswarnFutureWarningr>   )rA   s    rE   r   z'Gemma3TextConfig.sliding_window_pattern   s"    b	
 +++    c                     || _         y )N)r>   )rA   values     rE   r   z'Gemma3TextConfig.sliding_window_pattern   s
    ',$rJ   )i@  i 	  i $              gelu_pytorch_tanhi   {Gz?gư>Tr   r!   r   Tg    .AFg        rP   i   NNNNg     @)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr&   propertyr   setter__classcell__rD   s   @rE   r   r   "   s    rh J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56 - ' ! $#%7F0P , , ""- #-rJ   r   c                        e Zd ZdZdZddddZeedZ	 	 	 	 	 	 	 dde	e
eeeef   f      d	e	e
eeeef   f      d
ededededef fdZ xZS )Gemma3Configa  
    This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
    Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PaliGemma-2B.

    e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
            The config object of the text backbone.
        vision_config (`Union[AutoConfig, dict]`,  *optional*):
            Custom vision config or dict.
        mm_tokens_per_image (`int`, *optional*, defaults to 256):
            The number of tokens per image embedding.
        boi_token_index (`int`, *optional*, defaults to 255999):
            The begin-of-image token index to wrap the image prompt.
        eoi_token_index (`int`, *optional*, defaults to 256000):
            The end-of-image token index to wrap the image prompt.
        image_token_index (`int`, *optional*, defaults to 262144):
            The image token index to encode the image prompt.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.


    Example:

    ```python
    >>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig

    >>> # Initializing a Siglip-like vision config
    >>> vision_config = SiglipVisionConfig()

    >>> # Initializing a Gemma3 Text config
    >>> text_config = Gemma3TextConfig()

    >>> # Initializing a Gemma3 gemma-3-4b style configuration
    >>> configuration = Gemma3Config(vision_config, text_config)

    >>> # Initializing a model from the gemma-3-4b style configuration
    >>> model = Gemma3TextConfig(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```gemma3image_token_indexboi_token_indexeoi_token_index)image_token_idboi_token_ideoi_token_id)text_configvision_configrh   ri   mm_tokens_per_imager/   c                 z   | t               }t        j                  d       nt        |t              rt        di |}t        |t              rt        di |}n!|t               }t        j                  d       || _        || _        || _        || _	        || _
        || _        || _        t        	| 8  di | y )Nz@text_config is None, using default Gemma3TextConfig text config.zFvision_config is None, using default SiglipVisionConfig vision config.r$   )r   loggerinfo
isinstancedictr   rh   ri   rj   rc   rd   rb   r/   r%   r&   )
rA   rh   ri   rj   rc   rd   rb   r/   rB   rD   s
            rE   r&   zGemma3Config.__init__9  s     *,KKKZ[T**9[9KmT*.??M".0MKK`a&*#6 ..!2!2"6"rJ   )NNrP   i i  i   rR   )rS   rT   rU   rV   rW   attribute_mapr   r   sub_configsr   r   ro   strr   intfloatr&   r]   r^   s   @rE   r`   r`      s    .` J-))M (+K JNMQ#&&&!(#'#e$4d38n$DEF#  &8$sCx.&H IJ# !	#
 # # # !# #rJ   r`   )rG   typingr   r   r   configuration_utilsr   r   modeling_rope_utilsr	   utilsr
   siglipr   
get_loggerrS   rl   r   r`   __all__r$   rJ   rE   <module>r|      s]   ,  ' ' J 9  ' 
		H	%X-' X-v[## [#| -
.rJ   