
    rhwN                         d Z ddlZddlZddlmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZm Z m!Z!  e!jD                  e#      Z$ e        rddl%Z% G d	 d
e	      Z&d
gZ'y)z!Image processor class for Gemma3.    N)OptionalUnion   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_flat_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingc            &           e Zd ZdZddgZddej                  ddddddddddfdedee	e
ef      d	ed
edeeef   dedeeeee   f      deeeee   f      dee   dee   dee   dee   dee   ddf fdZ	 	 ddej"                  dedededeee
ef      deee
ef      fdZ	 	 ddeej"                     dededededeee
ef      deee
ef      fdZ e       dddddddddej,                  ddddddfdedee   dee	e
ef      d	ed
ee   dee   dee   deeeee   f      deeeee   f      deee
ef      dee   deee
ef      dee   dee   dee   dee   dee   dej4                  j4                  f$d       Z xZS )Gemma3ImageProcessoraI
  
    Constructs a SigLIP image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
            `do_normalize` in the `preprocess` method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
        do_pan_and_scan (`bool`, *optional*):
            Whether to apply `pan_and_scan` to images.
        pan_and_scan_min_crop_size (`int`, *optional*):
            Minimum size of each crop in pan and scan.
        pan_and_scan_max_num_crops (`int`, *optional*):
            Maximum number of crops per image in pan and scan.
        pan_and_scan_min_ratio_to_activate (`float`, *optional*):
            Minimum aspect ratio to activate pan and scan.
    pixel_values	num_cropsTNgp?	do_resizesizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbdo_pan_and_scanpan_and_scan_min_crop_sizepan_and_scan_max_num_crops"pan_and_scan_min_ratio_to_activatereturnc                 .   t        |   di | ||nddd}t        |d      }||nt        }||nt        }|| _        || _        || _        || _        || _	        || _
        || _        || _        |	| _        |
| _        || _        || _        || _        y )N   )heightwidthT)default_to_square )super__init__r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   )selfr    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   kwargs	__class__s                  /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/gemma3/image_processing_gemma3.pyr5   zGemma3ImageProcessor.__init___   s    " 	"6"'tc-JTT:#-#9Z?U
!*!6I<Q	"	 $,($",.*D'*D'2T/    imagedata_formatinput_data_formatc           
      D   t        |      \  }}||k\  rt||z  |k  rg S t        t        j                  ||z  dz               }	t	        t        t        j                  ||z              |	      }	t        d|	      }	t	        ||	      }	d}
ns||z  |k  rg S t        t        j                  ||z  dz               }
t	        t        t        j                  ||z              |
      }
t        d|
      }
t	        ||
      }
d}	t        t        j                  ||	z              }t        t        j                  ||
z              }t	        ||      |k  rg S t        |	      D cg c]  }||z  	 }}t        |
      D cg c]  }||z  	 }}|t        j                  k(  r9t        j                  ||      D cg c]  \  }}||||z   |||z   f    }}}|S t        j                  ||      D cg c]  \  }}|dd|||z   |||z   f    }}}|S c c}w c c}w c c}}w c c}}w )a  
        Pan and Scan and image, by cropping into smaller images when the aspect ratio exceeds
        minimum allowed ratio.

        Args:
            image (`np.ndarray`):
                Image to resize.
            pan_and_scan_min_crop_size (`int`, *optional*):
                Minimum size of each crop in pan and scan.
            pan_and_scan_max_num_crops (`int`, *optional*):
                Maximum number of crops per image in pan and scan.
            pan_and_scan_min_ratio_to_activate (`float`, *optional*):
                Minimum aspect ratio to activate pan and scan.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        g      ?      N)r   intmathfloorminmaxceilranger   LAST	itertoolsproduct)r6   r;   r*   r+   r,   r<   r=   r0   r1   num_crops_wnum_crops_hcrop_size_wcrop_size_hicrop_positions_wcrop_positions_hpos_hpos_wimage_cropss                      r9   pan_and_scanz!Gemma3ImageProcessor.pan_and_scan   sT   6 'u- F?v~ BB	 djj#)=>?Kc$**U5O-O"PQS^_K a-K8+FKK
 ~ BB	 djj%#)=>?Kc$**V6P-P"QRT_`K a-K8+FKK$))EK$789$))F[$89: {K(+EEI5:;5GHK!OHH5:;5GHK!OHH 0 5 55 %.$5$56FHX$Y E5 eek1155;;N3NNOK   %.$5$56FHX$Y E5 a!44eek>Q6QQRK 
  IH
s   H6H0H)Himagesc           	          g }g }	|D ]H  }
| j                  |
|||||      }|j                  |
g|z          |	j                  t        |             J ||	fS )N)r;   r*   r+   r,   r<   r=   )rU   extendappendlen)r6   rV   r)   r*   r+   r,   r<   r=   pas_images_listr   r;   
pas_imagess               r9    _process_images_for_pan_and_scanz5Gemma3ImageProcessor._process_images_for_pan_and_scan   sz     	 
	.E**+E+E3U'"3 + J ""E7Z#78S_-
	. 	))r:   return_tensorsc           
      t   ||n| j                   }||n| j                  }t        |dd      }||n| j                  }||n| j                  }||n| j
                  }||n| j                  }||n| j                  }|	|	n| j                  }	||n| j                  }||n| j                  }||n| j                  }||n| j                  }||n| j                  }t        |      }t        |      st!        d      t#        |||||	|||       |r|D cg c]  }t%        |       }}|D cg c]  }t'        |       }}|r#t)        |d         rt*        j-                  d       |t/        |d         }|r| j1                  |||||||      \  }}n|D cg c]  }d }}g }|D ]k  }|r|d	   |d
   }}t3        |||f||      }|r| j5                  |||      }|r| j7                  |||	|      }t9        |||      }|j;                  |       m ||d}t=        ||
      S c c}w c c}w c c}w )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            do_pan_and_scan (`bool`, *optional*, defaults to `self.do_pan_and_scan`):
                Whether to apply `pan_and_scan` to images.
            pan_and_scan_min_crop_size (`int`, *optional*, defaults to `self.pan_and_scan_min_crop_size`):
                Minimum size of each crop in pan and scan.
            pan_and_scan_max_num_crops (`int`, *optional*, defaults to `self.pan_and_scan_max_num_crops`):
                Maximum number of crops per image in pan and scan.
            pan_and_scan_min_ratio_to_activate (`float`, *optional*, defaults to `self.pan_and_scan_min_ratio_to_activate`):
                Minimum aspect ratio to activate pan and scan.
        r!   F)
param_namer2   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r#   r$   r%   r&   r'   r    r!   r"   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)rV   r)   r*   r+   r,   r<   r=   r0   r1   )r;   r!   r"   r=   )r;   scaler=   )r;   meanstdr=   )input_channel_dim)r   r   )datatensor_type)r    r!   r   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r   r   
ValueErrorr   r	   r   r   loggerwarning_oncer   r]   r
   rescale	normalizer   rY   r   )r6   rV   r    r!   r"   r#   r$   r%   r&   r'   r^   r<   r=   r(   r)   r*   r+   r,   r;   r   _processed_imagesr0   r1   re   s                            r9   
preprocesszGemma3ImageProcessor.preprocess   s   V "+!6IDNN	'tTYYTfN'38#-#9Zt
+9+E4K^K^'3'?|TEVEV#-#9Zt
!*!6IDNN	+9+E4K^K^-<-H/dNbNb*D*P&VZVuVu 	# +E*P&VZVuVu 	#
 2= /88 	+ *&1F#: 
 	&!)%!		
 9?@nU+@F@ 6<<E.'<</&)4s
 $ >vay I $ E E /+E+E3U'"3 !F !FI %++q+I+ 	+E $XWvuo\m 5ZkljiSd '  0{VghE##E*!	+$ !1yI>BBc A =0 ,s   H+1H0	H5)NN)__name__
__module____qualname____doc__model_input_namesr   BILINEARboolr   dictstrrA   r   floatlistr5   npndarrayr   rU   r]   r   FIRSTr   r   PILImagern   __classcell__)r8   s   @r9   r   r   5   s   %N (5 )-'9'B'B,3!:>9=)-*.4848>B#U#U tCH~&#U %	#U
 #U c5j)#U #U U5$u+#567#U E%e"456#U !#U "$#U %-SM#U %-SM#U -5UO#U  
!#UV ?CDHPzzP %(P %(	P
 -2P eC)9$9:;P $E#/?*?$@APr ?CDH*RZZ * * %(	*
 %(* -2* eC)9$9:;* $E#/?*?$@A*2 %& %))-'+%)*.'+:>9=;?2B2H2HDH)-*.4848>B%eCeC D>eC tCH~&	eC
 %eC TNeC !eC tneC U5$u+#567eC E%e"456eC !sJ!78eC ./eC $E#/?*?$@AeC !eC "$eC  %-SM!eC" %-SM#eC$ -5UO%eC& 
'eC 'eCr:   r   )(rr   rI   rB   typingr   r   numpyrz   image_processing_utilsr   r   r   image_transformsr	   r
   r   image_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   
get_loggerro   rh   r}   r   __all__r3   r:   r9   <module>r      s~    (   "  U U 
    _ ^ 
		H	% `C- `CF "
"r:   