
    rhr                     X   d dl mZmZ d dlZddlmZ ddlmZ ddlm	Z	 ddl
mZ ddlmZ dd	lmZmZ d
dlmZmZmZmZ d
dlmZ ddlmZ ddlmZ  ej8                  e      ZdZ G d de      Z  G d de	      Z! G d de      Z" G d de      Z# G d de      Z$ G d de      Z%g dZ&y)    )OptionalUnionN   )Cache)FlashAttentionKwargs)GradientCheckpointingLayer)CausalLMOutputWithPast)Unpack)TransformersKwargslogging   )GlmAttentionGlmForCausalLMGlmForSequenceClassificationGlmForTokenClassification)Phi3MLP   )
Glm4Config)Glm4RMSNormzTHUDM/GLM-4-9B-0414c                       e Zd Zy)Glm4MLPN__name__
__module____qualname__     x/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/glm4/modular_glm4.pyr   r   %       r   r   c                   d    e Zd Zdedef fdZ	 	 	 	 	 	 ddej                  deej                     deej                     dee
   dee   d	eej                     d
eeej                  ej                  f      dee   deej                  eeej                  ej                  f      f   fdZ xZS )Glm4DecoderLayerconfig	layer_idxc                    t         |           |j                  | _        t        ||      | _        t        |      | _        t        |j                  |j                        | _	        t        |j                  |j                        | _
        t        |j                  |j                        | _        t        |j                  |j                        | _        y )N)r"   r#   )eps)super__init__hidden_sizeGlm4Attention	self_attnr   mlpr   rms_norm_epsinput_layernormpost_attention_layernormpost_self_attn_layernormpost_mlp_layernorm)selfr"   r#   	__class__s      r   r'   zGlm4DecoderLayer.__init__*   s    !--&f	J6?*6+=+=6CVCVW(3F4F4FFL_L_(`%(3F4F4FFL_L_(`%"-f.@.@fFYFY"Zr   hidden_statesattention_maskposition_idspast_key_value	use_cachecache_positionposition_embeddingskwargsreturnc                    |}	| j                  |      } | j                  d|||||||d|\  }}
| j                  |      }|	|z   }|}	| j                  |      }| j	                  |      }| j                  |      }|	|z   }|S )N)r3   r4   r5   r6   r7   r8   r9   r   )r-   r*   r/   r.   r+   r0   )r1   r3   r4   r5   r6   r7   r8   r9   r:   residual_s              r   forwardzGlm4DecoderLayer.forward5   s     !,,];)4>> 	
')%)) 3	
 	
q 55mD =0 55mD///> =0r   )NNNFNN)r   r   r   r   intr'   torchTensorr   
LongTensorr   booltupler
   r   FloatTensorr?   __classcell__r2   s   @r   r!   r!   )   s    	[z 	[c 	[ 2637*.$)59KO!||! !.! u//0	!
 !! D>! !!1!12! &eELL%,,,F&GH! -.! 
u  (51B1BEDUDU1U+V"WW	X!r   r!   c                       e Zd Zy)r)   Nr   r   r   r   r)   r)   Y   r   r   r)   c                   8     e Zd Zdee   deeef   f fdZ xZ	S )Glm4ForCausalLMsuper_kwargsr;   c                 "    t        |   di |S )ah  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, Glm4ForCausalLM

        >>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
        >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```r   )r&   r?   )r1   rL   r2   s     r   r?   zGlm4ForCausalLM.forward^   s    4 w...r   )
r   r   r   r
   r   r   rE   r	   r?   rG   rH   s   @r   rK   rK   ]   s0    /12/ 
u,,	-/ /r   rK   c                       e Zd Zy)Glm4ForSequenceClassificationNr   r   r   r   rO   rO   {   r   r   rO   c                       e Zd Zy)Glm4ForTokenClassificationNr   r   r   r   rQ   rQ      r   r   rQ   )Glm4PreTrainedModel	Glm4ModelrK   rO   rQ   )'typingr   r   rA   cache_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr	   processing_utilsr
   utilsr   r   glm.modeling_glmr   r   r   r   phi3.modeling_phi3r   configuration_glm4r   modeling_glm4r   
get_loggerr   logger_CHECKPOINT_FOR_DOCr   r!   r)   rK   rO   rQ   __all__r   r   r   <module>rc      s     #    B 9 6 & 0 t t ( * & 
		H	%+ 	g 	-1 -`	L 	/n /<	$@ 		!: 	r   