
    rhD                     f    d dl mZ d dlmZ  G d de      Z G d de      Z G d de      ZddgZy	)
   )PretrainedConfig)rope_config_validationc                   J     e Zd ZdZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )Glm4vVisionConfiga  
    This is the configuration class to store the configuration of a [`Glm4vVisionModel`]. It is used to instantiate an Glm4vVisionModel
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield
    a similar configuration to that of
    GLM-4.1V-9B-Thinking [THUDM/GLM-4.1V-9B-Thinking](https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking).

    Args:
        hidden_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the encoder layers and the pooler layer.
        depth (`int`, *optional*, defaults to 24):
            Number of layers (depth) in the model.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the queries, keys and values.
        intermediate_size (`int`, *optional*, defaults to 13696):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"selu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            Dropout probability for attention weights.
        projection_dropout (`float`, *optional*, defaults to 0.0):
            Dropout probability for the projection layer.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        image_size (`int` or `list[int]`, *optional*, defaults to `[336, 336]`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to `14`):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_hidden_size (`int`, *optional*, defaults to 4096):
            The output hidden size of the vision model.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        spatial_merge_size (`int`, *optional*, defaults to 2):
            The size used for merging spatial dimensions.
        temporal_patch_size (`int`, *optional*, defaults to 2):
            The size used for patches along the temporal dimension.
    Example:

    ```python
    >>> from transformers import Glm4vVisionConfig, Glm4vVisionModel

    >>> # Initializing a Glm4vVisionConfig GLM-4.1V-9B style configuration
    >>> configuration = Glm4vVisionConfig()

    >>> # Initializing a model (with random weights) from the GLM-4.1V-9B configuration
    >>> model = Glm4vVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```glm4vvision_configc                     t        |   di | || _        || _        || _        || _        || _        || _        |	| _        || _	        || _
        || _        || _        || _        |
| _        || _        || _        y )N )super__init__depthhidden_size
hidden_act	num_headsin_channels
image_size
patch_sizespatial_merge_sizetemporal_patch_sizeout_hidden_sizeintermediate_sizeinitializer_rangerms_norm_epsattention_biasattention_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                    /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/glm4v/configuration_glm4v.pyr   zGlm4vVisionConfig.__init__T   s    & 	"6"
&$"&$$"4#6 .!2!2(,!2    )   i   siluF           r   iP     h㈵>         5  {Gz?)__name__
__module____qualname____doc__
model_typebase_config_keyr   __classcell__r   s   @r   r   r      sN    5n J%O !#3 #3r    r   c                        e Zd ZdZdZdZdgZddddddd	Zd
gdgfddgdgfdgdgfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z	 xZ
S )Glm4vTextConfiga  
    This is the configuration class to store the configuration of a [`Glm4vModel`]. It is used to instantiate a
    GLM-4.1V model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of
    GLM-4.1V-9B-Thinking [THUDM/GLM-4.1V-9B-Thinking](https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 151552):
            Vocabulary size of the Glm4v model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Glm4vModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 13696):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 40):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 2):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
        image_token_id (`int`, *optional*):
            Token index used as placeholder for image embeddings.
        video_token_id (`int`, *optional*):
            Token index used as placeholder for video embeddings.

    ```python
    >>> from transformers import Glm4vTextModel, Glm4vConfig

    >>> # Initializing a GLM-4.1V style configuration
    >>> configuration = Glm4vConfig()

    >>> # Initializing a model from the GLM-4.1V style configuration
    >>> model = Glm4vTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
glm4v_texttext_configpast_key_valuescolwiserowwisecolwise_reprowwise_rep)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         || _        || _        || _        || _        || _        ||}|| _        || _        |	| _        |
| _	        || _
        || _        || _        || _        | j                  *d| j                  v r| j                  d   | j                  d<   t        | dh       || _        || _        t#        | H  dd|i| y )Ntype	rope_typemrope_section)ignore_keystie_word_embeddingsr
   )
vocab_sizemax_position_embeddingsr   r   num_hidden_layersnum_attention_headsnum_key_value_headsr   r   r   	use_cache
rope_thetar   rope_scalingr   image_token_idvideo_token_idr   r   )r   rJ   r   r   rL   rM   rN   r   rK   r   r   rO   rI   rP   r   rQ   rR   rS   r   r   s                      r   r   zGlm4vTextConfig.__init__   s    * %'>$&!2!2#6  &"5#6 $!2("$!2( (Vt7H7H-H-1->->v-FDk*t/1BC,,K-@KFKr    )i P r)   r*   (       r'   r"   i   r+   r&   TFg     @r#   NNN)r,   r-   r.   r/   r0   r1   keys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr   r2   r3   s   @r   r5   r5   z   s    Pd J#O#4"5 &/%.%.%.%2"/ &(9:#%568IJ!"_$56  %!%1L 1Lr    r5   c                   H     e Zd ZdZdZeedZdgZ	 	 	 	 	 	 	 	 d fd	Z	 xZ
S )Glm4vConfiga\  
    This is the configuration class to store the configuration of a [`Glm4vModel`]. It is used to instantiate a
    GLM-4.1V model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of
    GLM-4.1V-9B-Thinking [THUDM/GLM-4.1V-9B-Thinking](https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Glm4vTextConfig`):
            The config object or dictionary of the text backbone.
        vision_config (`Union[PreTrainedConfig, dict]`,  *optional*, defaults to `Glm4vVisionConfig`):
            The config object or dictionary of the vision backbone.
        image_token_id (`int`, *optional*, defaults to 151343):
            The image token index to encode the image prompt.
        video_token_id (`int`, *optional*, defaults to 151344):
            The video token index to encode the image prompt.
        image_start_token_id (`int`, *optional*, defaults to 151339):
            The image start token index to encode the start of image.
        image_end_token_id (`int`, *optional*, defaults to 151340):
            The image end token index to encode the end of image.
        video_start_token_id (`int`, *optional*, defaults to 151341):
            The video start token index to encode the start of video.
        video_end_token_id (`int`, *optional*, defaults to 151342):
            The video end token index to encode the end of video.

    ```python
    >>> from transformers import Glm4vForConditionalGeneration, Glm4vConfig

    >>> # Initializing a GLM-4.1V style configuration
    >>> configuration = Glm4vConfig()

    >>> # Initializing a model from the GLM-4.1V style configuration
    >>> model = Glm4vForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```r   )r   r7   r8   c	                    t        
|   di |	 t        |t              r | j                  d   di || _        n| | j                  d          | _        t        |t              r | j                  d   di || _        n| | j                  d   di |	| _        || _        || _        || _	        || _
        || _        || _        y )Nr   r7   r
   )r   r   
isinstancedictsub_configsr   r7   rR   rS   video_start_token_idvideo_end_token_idimage_start_token_idimage_end_token_id)r   r7   r   rR   rS   ra   rb   r_   r`   r   r   s             r   r   zGlm4vConfig.__init__A  s     	"6"mT*!B!1!1/!B!S]!SD"!B!1!1/!B!DDk4(>t//>MMD >t//>HHD,,$8!"4$8!"4r    )NNi/O i0O i+O i,O i-O i.O )r,   r-   r.   r/   r0   r   r5   r^   rV   r   r2   r3   s   @r   rZ   rZ     sG    'R J$5oVK#4"5 #!#!5 5r    rZ   N)configuration_utilsr   modeling_rope_utilsr   r   r5   rZ   __all__r
   r    r   <module>rf      sL   * 4 9^3( ^3BVL& VLrK5" K5\ +
,r    