
    rh`                     ,   d dl mZmZmZ d dlZd dlmZ ddlmZ ddlm	Z	m
Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZ ddlmZmZ ddlmZmZ ddlmZ ddlmZm Z m!Z!m"Z" ddl#m$Z$ ddl%m&Z&  e"jN                  e(      Z)d Z*d4dZ+dejX                  de-dejX                  fdZ.	 d5dej^                  dejX                  dejX                  dejX                  deejX                     de0de0d ee   fd!Z1 G d" d#ej^                        Z2 ed$       G d% d&ej^                               Z3 G d' d(ej^                        Z4 G d) d*e      Z5e  G d+ d,e             Z6 G d- d.ej^                        Z7e  G d/ d0e6             Z8e  G d1 d2e6e             Z9g d3Z:y)6    )CallableOptionalUnionN)nn   )ACT2FN)CacheDynamicCache)GenerationMixin)use_kernel_forward_from_hub)create_causal_mask)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPast)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)TransformersKwargsauto_docstringcan_return_tuplelogging)check_model_inputs   )GraniteConfigc                     | dd| j                   d   dz  f   }| d| j                   d   dz  df   }t        j                  | |fd      S )z*Rotates half the hidden dims of the input..N   dim)shapetorchcat)xx1x2s      /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/granite/modeling_granite.pyrotate_halfr)   -   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''    c                     |j                  |      }|j                  |      }| |z  t        |       |z  z   }||z  t        |      |z  z   }||fS )a  Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    )	unsqueezer)   )qkcossinposition_idsunsqueeze_dimq_embedk_embeds           r(   apply_rotary_pos_embr5   4   sY    ( --
&C
--
&C3w;q>C/0G3w;q>C/0GGr*   hidden_statesn_repreturnc                     | j                   \  }}}}|dk(  r| S | dddddddddf   j                  |||||      } | j                  |||z  ||      S )z
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    r   N)r"   expandreshape)r6   r7   batchnum_key_value_headsslenhead_dims         r(   	repeat_kvr@   O   so    
 2?1D1D.Ehz!!Qa"23::5BUW\^bdlmM  (;e(CT8TTr*   modulequerykeyvalueattention_maskscalingdropoutkwargsc                 T   t        || j                        }t        || j                        }	t        j                  ||j	                  dd            |z  }
|#|d d d d d d d |j
                  d   f   }|
|z   }
t        j                  j                  |
dt        j                        j                  |j                        }
t        j                  j                  |
|| j                        }
t        j                  |
|	      }|j	                  dd      j                         }||
fS )Nr   r   r   )r!   dtype)ptrainingr   )r@   num_key_value_groupsr#   matmul	transposer"   r   
functionalsoftmaxfloat32torK   rG   rM   
contiguous)rA   rB   rC   rD   rE   rF   rG   rH   
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r(   eager_attention_forwardr[   [   s    3 ; ;<JUF$?$?@L<<z';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#k1==((2U]](SVVW\WbWbcL==((6??([L,,|\:K''1-88:K$$r*   c                       e Zd ZdZddedee   f fdZ	 	 ddej                  de
ej                  ej                  f   deej                     dee   d	eej                     d
ee   de
ej                  ej                  f   fdZ xZS )GraniteAttentionz=Multi-headed attention from 'Attention Is All You Need' paperconfig	layer_idxc                 ^   t         |           || _        || _        t	        |d|j
                  |j                  z        | _        |j                  |j                  z  | _	        |j                  | _        |j                  | _        d| _        t        j                  |j
                  |j                  | j                  z  |j                         | _        t        j                  |j
                  |j                  | j                  z  |j                         | _        t        j                  |j
                  |j                  | j                  z  |j                         | _        t        j                  |j                  | j                  z  |j
                  |j                         | _        y )Nr?   Tbias)super__init__r^   r_   getattrhidden_sizenum_attention_headsr?   r=   rN   attention_multiplierrF   attention_dropout	is_causalr   Linearattention_biasq_projk_projv_projo_projselfr^   r_   	__class__s      r(   rd   zGraniteAttention.__init__x   sJ   "
F4F4F&JdJd4de$*$>$>&B\B\$\!22!'!9!9ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii&&68J8JQWQfQf
r*   r6   position_embeddingsrE   past_key_valuecache_positionrH   r8   c                 4   |j                   d d }g |d| j                  }| j                  |      j                  |      j	                  dd      }	| j                  |      j                  |      j	                  dd      }
| j                  |      j                  |      j	                  dd      }|\  }}t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                  sdn| j                  | j                   d|\  }} |j"                  g |d j%                         }| j'                  |      }||fS )Nr   r   r   )r0   r/   rv   eager        )rG   rF   )r"   r?   rm   viewrP   rn   ro   r5   updater_   r[   r^   _attn_implementationr   rM   ri   rF   r;   rU   rp   )rr   r6   rt   rE   ru   rv   rH   input_shapehidden_shapequery_statesrV   rW   r/   r0   cache_kwargsattention_interfacerZ   rX   s                     r(   forwardzGraniteAttention.forward   s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&S#7jRUWZ#[ j%#&snUL'5'<'<ZW[WeWegs't$J(?;;++w6"9$++:Z:Z"[$7	%
  $}}C$2H2HLL	%
 	%
!\ *k));;;;FFHkk+.L((r*   N)NN)__name__
__module____qualname____doc__r   r   intrd   r#   Tensortupler	   
LongTensorr   r   r   __classcell__rs   s   @r(   r]   r]   u   s    G
} 
# 
8 +/59))||)) #5<<#=>)) !.	))
 !)) !!1!12)) +,)) 
u||U\\)	*))r*   r]   RMSNormc                   ,     e Zd Zd fd	Zd Zd Z xZS )GraniteRMSNormc                     t         |           t        j                  t	        j
                  |            | _        || _        y)z=
        GraniteRMSNorm is equivalent to T5LayerNorm
        N)rc   rd   r   	Parameterr#   onesweightvariance_epsilon)rr   rf   epsrs   s      r(   rd   zGraniteRMSNorm.__init__   s1     	ll5::k#:; #r*   c                 "   |j                   }|j                  t        j                        }|j	                  d      j                  dd      }|t        j                  || j                  z         z  }| j                  |j                  |      z  S )Nr   r   T)keepdim)	rK   rT   r#   rS   powmeanrsqrtr   r   )rr   r6   input_dtypevariances       r(   r   zGraniteRMSNorm.forward   sy    #))%((7 $$Q',,R,>%Ht?T?T4T(UU{{]--k:::r*   c                 ^    t        | j                  j                         d| j                   S )Nz, eps=)r   r   r"   r   rr   s    r(   
extra_reprzGraniteRMSNorm.extra_repr   s*    ))*+6$2G2G1HIIr*   )gư>)r   r   r   rd   r   r   r   r   s   @r(   r   r      s    $;Jr*   r   c                   $     e Zd Z fdZd Z xZS )
GraniteMLPc                    t         |           || _        |j                  | _        |j                  | _        t        j                  | j                  | j                  |j                        | _        t        j                  | j                  | j                  |j                        | _	        t        j                  | j                  | j                  |j                        | _
        t        |j                     | _        y )Nra   )rc   rd   r^   rf   intermediate_sizer   rk   mlp_bias	gate_projup_proj	down_projr   
hidden_actact_fnrr   r^   rs   s     r(   rd   zGraniteMLP.__init__   s    !--!'!9!94#3#3T5K5KRXRaRabyy!1!143I3IPVP_P_`4#9#94;K;KRXRaRabV../r*   c                     | j                  | j                  | j                  |            | j                  |      z        }|S r   )r   r   r   r   )rr   r%   r   s      r(   r   zGraniteMLP.forward   s6    NN4;;t~~a/@#ADLLQRO#ST	r*   )r   r   r   rd   r   r   r   s   @r(   r   r      s    0r*   r   c                   f    e Zd Zdedef fdZ	 	 	 	 	 	 	 ddej                  deej                     deej                     dee
   dee   d	ee   d
eej                     deeej                  ej                  f      deej                  eeej                  ej                  f      f   fdZ xZS )GraniteDecoderLayerr^   r_   c                 B   t         |           |j                  | _        t        ||      | _        t        |      | _        t        |j                  |j                        | _	        t        |j                  |j                        | _
        |j                  | _        y )N)r^   r_   r   )rc   rd   rf   r]   	self_attnr   mlpr   rms_norm_epsinput_layernormpost_attention_layernormresidual_multiplierrq   s      r(   rd   zGraniteDecoderLayer.__init__   sz    !--)9Mf%-f.@.@fFYFYZ(6v7I7IvObOb(c%#)#=#= r*   r6   rE   r1   ru   output_attentions	use_cacherv   rt   r8   c	                    |}
| j                  |      } | j                  d||||||||d|	\  }}|
|| j                  z  z   }|}
| j                  |      }| j	                  |      }|
|| j                  z  z   }|f}|r||fz  }|S )a.  
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence
            position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        )r6   rE   r1   ru   r   r   rv   rt    )r   r   r   r   r   )rr   r6   rE   r1   ru   r   r   rv   rt   rH   residualself_attn_weightsoutputss                r(   r   zGraniteDecoderLayer.forward   s    D !,,]; ,:4>> 
,
')%)/) 3
,
 
,
(( !=43K3K#KK !55mD/ =43K3K#KK ")++Gr*   )NNNFFNN)r   r   r   r   r   rd   r#   r   r   r   r	   boolr   FloatTensorr   r   r   s   @r(   r   r      s    >} > > 2637*.,1$)59KO?||? !.? u//0	?
 !? $D>? D>? !!1!12? &eELL%,,,F&GH? 
u  (51B1BEDUDU1U+V"WW	X?r*   r   c                   J    e Zd ZU eed<   dZdZdgZdgZdZ	dZ
dZdZdZeedZy)GranitePreTrainedModelr^   modelTr   past_key_values)r6   
attentionsN)r   r   r   r   __annotations__base_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_supports_sdpa_supports_flex_attn_can_compile_fullgraph_supports_attention_backendr   r]   _can_record_outputsr   r*   r(   r   r   -  sQ    &*#./#4"5N!"&,&r*   r   c                   ^     e Zd Zddef fdZ ej                         ed               Z xZ	S )GraniteRotaryEmbeddingr^   c                    t         |           t        |d      rUt        |j                  t
              r;|j                  j                  d|j                  j                  d            | _        nd| _        |j                  | _	        |j                  | _
        || _        t        | j                     | _        | j                  | j                  |      \  }| _        | j                  d|d       | j                   | _        y )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)rc   rd   hasattr
isinstancer   dictgetr   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr^   r   rope_init_fnattention_scalingregister_bufferr   original_inv_freq)rr   r^   devicer   rs   s       r(   rd   zGraniteRotaryEmbedding.__init__A  s    6>*z&:M:Mt/T#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q($(ZeD!%r*   c                 b   | j                   d d d d f   j                         j                  |j                  d   dd      j	                  |j
                        }|d d d d d f   j                         }t        |j
                  j                  t              r/|j
                  j                  dk7  r|j
                  j                  nd}t        j                  |d      5  |j                         |j                         z  j                  dd      }t        j                  ||fd	      }|j                         | j                  z  }|j                         | j                  z  }	d d d        j	                  |j                   
      	j	                  |j                   
      fS # 1 sw Y   AxY w)Nr   r   r   mpscpuF)device_typeenabledr   r    )rK   )r   floatr:   r"   rT   r   r   r   strr#   autocastrP   r$   r/   r   r0   rK   )
rr   r%   r1   inv_freq_expandedposition_ids_expandedr   freqsembr/   r0   s
             r(   r   zGraniteRotaryEmbedding.forwardR  sV    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E!((--[`J`ahhmmfk^^UC 	5&,,.1F1L1L1NNYYZ[]^_E))UEN3C'')d444C'')d444C		5 vvAGGv$cff177f&;;;	5 	5s    BF%%F.r   )
r   r   r   r   rd   r#   no_gradr   r   r   r   s   @r(   r   r   @  s3    /} /" U]]_<  <r*   r   c                        e Zd Zdef fdZee	 	 	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee   deej                     dee   d	ee   d
ee   deej                     dee   defd              Z xZS )GraniteModelr^   c           	      .   t         |   |       |j                  | _        |j                  | _        t        j                  |j                  |j                  | j                        | _        t        j                  t        |j                        D cg c]  }t        ||       c}      | _        t        |j                  |j                        | _        t#        |      | _        d| _        |j(                  | _        | j+                          y c c}w )Nr   )r^   F)rc   rd   pad_token_idpadding_idx
vocab_sizer   	Embeddingrf   embed_tokens
ModuleListrangenum_hidden_layersr   layersr   r   normr   
rotary_embgradient_checkpointingembedding_multiplier	post_initrq   s      r(   rd   zGraniteModel.__init__d  s     !.. ++LL):):F<N<NPTP`P`ammEJ6KcKcEde	 3e
 #6#5#56;N;NO	0?&+#$*$?$?! 	 fs   D	input_idsrE   r1   r   inputs_embedsr   r   output_hidden_statesrv   rH   r8   c
                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|d u |d uz  rt	        d      | j
                  r%| j                  r|rt        j                  d       d}|| j                  |      }|| j                  z  }|r|
t               }|	F||j                         nd}t        j                  |||j                  d   z   |j                         }	||	j#                  d      }t%        | j                   |||	||      }|}| j'                  ||      }|rdnd }|rdnd }| j(                  d | j                   j*                   D ],  }|r||fz  } ||f||||||	|d	|
}|d   }|s$||d   fz  }. | j-                  |      }|r||fz  }t/        ||r|nd ||
      S )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.Fr   r   )r   )r^   input_embedsrE   rv   r   r1   r   )rE   r1   ru   r   r   rv   rt   )last_hidden_stater   r6   r   )r^   r   r  r   
ValueErrorr   rM   loggerwarning_oncer   r  r
   get_seq_lengthr#   aranger"   r   r,   r   r   r   r   r   r   )rr   r  rE   r1   r   r  r   r   r  rv   rH   past_seen_tokensrY   r6   rt   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r(   r   zGraniteModel.forwardu  sG    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I  --i8M%(A(AA0*nO!CRC^==?de"\\ "2]5H5H5K"KTaThThN )33A6L(;;&))+%
 & #oom\J #7BD0d![[)H4;;+H+HI 	6M#!m%55!)
*)."3#-$7
 
M *!,M =#3"55'	6* 		-0  -!11&+/8Od+%	
 	
r*   )	NNNNNNNNN)r   r   r   r   rd   r   r   r   r#   r   r   r	   r   r   r   r   r   r   r   r   s   @r(   r   r   b  s   } "  151537+/59$(,0/359_
E,,-_
 !._
 u//0	_

 "%_
   1 12_
 D>_
 $D>_
 'tn_
 !!1!12_
 +,_
 
!_
  _
r*   r   c                       e Zd ZdgZddiZddgdgfiZ fdZd Zd Ze	e
	 	 	 	 	 	 	 	 	 	 	 dd	eej                     d
eej                     deej                     deeeeej$                     f      deej$                     deej                     dee   dee   dee   deej                     deeej                  f   dee   defd              Z xZS )GraniteForCausalLMzlm_head.weightlm_headcolwise_repr6   logitsc                     t         |   |       t        |      | _        |j                  | _        t        j                  |j                  |j                  d      | _        | j                          y )NFra   )
rc   rd   r   r   r   r   rk   rf   r  r  r   s     r(   rd   zGraniteForCausalLM.__init__  sU     !&)
 ++yy!3!3V5F5FUS 	r*   c                     || _         y r   r   )rr   decoders     r(   set_decoderzGraniteForCausalLM.set_decoder  s	    
r*   c                     | j                   S r   r  r   s    r(   get_decoderzGraniteForCausalLM.get_decoder  s    zzr*   r  rE   r1   r   r  labelsr   r   r  rv   logits_to_keeprH   r8   c                    ||n| j                   j                  }|	|	n| j                   j                  }	 | j                  d||||||||	|
d	|}|j                  }t        |t              rt        | d      n|}| j                  |dd|ddf         }|| j                   j                  z  }d}|* | j                  d||| j                   j                  d|}t        |||j                  |j                  |j                        S )a  
        Example:

        ```python
        >>> from transformers import AutoTokenizer, GraniteForCausalLM

        >>> model = GraniteForCausalLM.from_pretrained("meta-granite/Granite-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-granite/Granite-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```N)	r  rE   r1   r   r  r   r   r  rv   )r  r  r   )lossr  r   r6   r   r   )r^   r   r  r   r  r   r   slicer  logits_scalingloss_functionr   r   r   r6   r   )rr   r  rE   r1   r   r  r  r   r   r  rv   r   rH   r   r6   slice_indicesr  r"  s                     r(   r   zGraniteForCausalLM.forward  s/   D 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,64:: ,
)%+'/!5),
 ,
  118B>SV8W~ot4]kmA}a,?@A$++444%4%%pVFt{{OeOepiopD%#33!//))
 	
r*   )NNNNNNNNNNr   )r   r   r   _tied_weights_keys_tp_plan_pp_planrd   r  r  r   r   r   r#   r   r   r   r	   listr   r   r   r   r   r   r   r   r   s   @r(   r  r    s   *+=)H_-z:;H  151537KO59-1$(,0/35934C
E,,-C
 !.C
 u//0	C

 "%tE4E4E/F(F"GHC
   1 12C
 ))*C
 D>C
 $D>C
 'tnC
 !!1!12C
 c5<</0C
 +,C
 
 C
  C
r*   r  )r  r   r   )Nr   )ry   );typingr   r   r   r#   r   activationsr   cache_utilsr	   r
   
generationr   integrationsr   masking_utilsr   modeling_layersr   modeling_outputsr   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r   utils.genericr   configuration_graniter   
get_loggerr   r
  r)   r5   r   r   r@   Moduler   r[   r]   r   r   r   r   r   r   r  __all__r   r*   r(   <module>r<     s  , - ,   ! . ) 7 / 9 O K F & R R / 0 
		H	%(6	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % % '(%4C)ryy C)L Y'JRYY J (J(  J4 JZ _  $<RYY <D s
) s
 s
l Y
/ Y
 Y
x Kr*   