
    rh                     8    d dl mZ ddlmZ  G d de      ZdgZy)    )Optional   )PretrainedConfigc            /            e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddededededed	ed
edededededededededededededede	e
e      de	e
e      f, fdZ xZS )
Lfm2Configa{  
    This is the configuration class to store the configuration of a [`Lfm2Model`]. It is used to instantiate a LFM2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LFM2-1.2B model.
    e.g. [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 65536):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Lfm2Model`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 12288):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        max_position_embeddings (`int`, *optional*, defaults to 128000):
            The maximum sequence length that this model might ever be used with. Lfm2 1 supports up to 2048 tokens,
            Lfm2 2 up to 4096, CodeLfm2 up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the conv layers.
        conv_L_cache (`int`, *optional*, defaults to 3):
            L_cache dim in the conv layers.
        block_multiple_of (`int`, *optional*, defaults to 256):
            Multiple for the `intermediate_size`.
        block_ffn_dim_multiplier (`float`, *optional*, defaults to 1.0):
            Multiplier for the `intermediate_size`.
        block_auto_adjust_ff_dim (`bool`, *optional*, defaults to `True`):
            Whether to adjust the dim of the `intermediate_size`.
        full_attn_idxs (`Optional`, *optional*):
            Index of the layers which use attention.
        layer_types (`Optional`, *optional*):
            Type of each layers.

    ```python
    >>> from transformers import Lfm2Model, Lfm2Config

    >>> # Initializing a LFM2 model
    >>> configuration = Lfm2Config()

    >>> # Initializing a model from the LFM2-1.2B style configuration
    >>> model = Lfm2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```lfm2past_key_values
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headsmax_position_embeddingsinitializer_rangenorm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_theta	conv_biasconv_L_cacheblock_multiple_ofblock_ffn_dim_multiplierblock_auto_adjust_ff_dimfull_attn_idxslayer_typesc                    || _         || _        || _        |j                  d|      | _        || _        |
| _        |	| _        || _        || _	        || _
        || _        || _        |j                  d|      | _        || _        || _        || _        || _        | j"                  <||nt%        t'        |            }t'        |      D cg c]
  }||v rdnd c}| _        |j                  d|      }t)        | T  d||||d| y c c}w )Nthetablock_ff_dimfull_attentionconvtie_embedding)r   r   r   r    )r
   r   r   getr   r   r   r   r   r   r   r   r   r   r   r   r   r   listrangesuper__init__)selfr
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargsi	__class__s                            ~/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/lfm2/configuration_lfm2.pyr+   zLfm2Config.__init__e   s0   4 %&!2 **Wj9'>$" !2 $7 #6  #( "(N<M!N!2(@%(@%&#/=/I^tTYZkTlOmN]bct]uvXYA4G 0V SvD$jj:MN 	
%%% 3		

 	
  ws   
D)i   i 
  i 0      r1      i  g{Gz?gh㈵>Tr         Tg    .AFr      g      ?TNN)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceintfloatboolr   r(   strr+   __classcell__)r/   s   @r0   r   r      sT   L\ J#4"5  !&!##%#$'.#'!$(%!$*-)-.2+//=
=
 =
 	=

 =
 !=
 !=
 "%=
 !=
 =
 =
 =
 =
 =
 "=
  !=
" #=
$ %=
& '=
( #()=
* #'+=
, !c+-=
. d3i(/=
 =
    r   N)typingr   configuration_utilsr   r   __all__r&   rA   r0   <module>rE      s&     3O
! O
d .rA   