
    rh/Z                         d dl mZmZ d dlmZ  ej
                  e      Z G d de      Z G d de      Z	 G d de      Z
g d	Zy
)   )PretrainedConfiglayer_type_validation)loggingc                        e Zd ZdZddddddddZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dded	ed
ededededededede	de	f fdZ
 xZS )Llama4VisionConfiga  
    This is the configuration class to store the configuration of a [`Llama4VisionModel`]. It is used to instantiate a
    Llama4 vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        num_hidden_layers (`int`, *optional*, defaults to 34):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input image.
        intermediate_size (`int`, *optional*, defaults to 5632):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        vision_output_dim (`int`, *optional*, defaults to 7680):
            Dimensionality of the vision model output. Includes output of transformer
            encoder with intermediate layers and global transformer encoder.
        image_size (`int`, *optional*, defaults to 448):
            The size (resolution) of each image *tile*.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        vision_feature_layer (``, *optional*, defaults to -1): TODO
        vision_feature_select_strategy (`int`, *optional*, defaults to `"default"`): TODO
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        pixel_shuffle_ratio (`int`, *optional*, defaults to 0.5): TODO
        projector_input_dim (`int`, *optional*, defaults to 4096): TODO
        projector_output_dim (`int`, *optional*, defaults to 4096): TODO
        multi_modal_projector_bias (`int`, *optional*, defaults to `False`): TODO
        projector_dropout (`int`, *optional*, defaults to 0.0): TODO
        attention_dropout (`int`, *optional*, defaults to 0.0): TODO
        rope_theta (`int`, *optional*, defaults to 10000): TODO
    colwiserowwisecolwise_rep)zmodel.layers.*.self_attn.q_projzmodel.layers.*.self_attn.k_projzmodel.layers.*.self_attn.v_projzmodel.layers.*.self_attn.o_projzvision_adapter.mlp.fc1zvision_adapter.mlp.fc2zpatch_embedding.linearllama4_vision_modelvision_confighidden_size
hidden_actnum_hidden_layersnum_attention_headsnum_channelsintermediate_sizevision_output_dim
image_size
patch_sizenorm_epsinitializer_rangec                 <   || _         || _        || _        || _        || _        || _        || _        |	| _        |
| _        || _	        || _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        t)        | T  di | y )N )r   r   r   r   r   r   r   r   r   r   r   pixel_shuffle_ratioprojector_input_dimprojector_output_dimmulti_modal_projector_biasprojector_dropoutattention_dropoutvision_feature_layervision_feature_select_strategy
rope_thetasuper__init__)selfr   r   r   r   r   r   r   r   r   r   r    r!   r   r   r   r   r   r   r   r"   kwargs	__class__s                         /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/llama4/configuration_llama4.pyr$   zLlama4VisionConfig.__init__T   s    0 '$!2(!2$!2$ #6 !2#6 #6 $8!*D'!2!2$8!.L+$"6"    )i   gelu"      r   i   i   i     h㈵>default{Gz?g      ?   r2   F        r3   i'  )__name__
__module____qualname____doc__base_model_tp_plan
model_typebase_config_keyintstrfloatr$   __classcell__r'   s   @r(   r   r      s    ,^ ,5+4+4+4"+"+"/ 'J%O  !##%!%!%'0#' !#(+,#,# ,# 	,#
 !,# ,# ,# ,# ,# ,# ,# !,# ,#r)   r   c                        e Zd ZdZdZdgZi dddddddd	d
dddddddddddddddddddddddddZdddd	ddddddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d! fd 	Z xZ	S )"Llama4TextConfiga  
    This is the configuration class to store the configuration of a [`Llama4TextModel`]. It is used to instantiate a
    Llama4 text model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 202048):
            Vocabulary size of the Llama4 text model. Defines the maximum number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`Llama4TextModel`].
        hidden_size (`int`, *optional*, defaults to 5120):
            Dimensionality of the embeddings and hidden states.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        intermediate_size_mlp (`int`, *optional*, defaults to 16384): TODO
        num_hidden_layers (`int`, *optional*, defaults to 48):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 40):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
            specified, will default to `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 128): TODO
        hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions.
        pad_token_id (`int`, *optional*, defaults to 128004):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the beginning of sentence token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the end of sentence token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to `500000.0`):
            The base period of the RoPE embeddings.
        attention_dropout (`int`, *optional*, defaults to 0.0): TODO
        num_experts_per_tok (`int`, *optional*, defaults to 1): TODO
        num_local_experts (`int`, *optional*, defaults to 16): TODO
        moe_layers (`int`, *optional*): TODO
        interleave_moe_layer_step (`int`, *optional*, defaults to 1): TODO
        use_qk_norm (`int`, *optional*, defaults to `True`): TODO
        output_router_logits (`int`, *optional*, defaults to `False`): TODO
        router_aux_loss_coef (`int`, *optional*, defaults to 0.001): TODO
        router_jitter_noise (`int`, *optional*, defaults to 0.0): TODO
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
            <TODO>
            <TODO>
        no_rope_layers (`list[int]`, *optional*):
            List with at least the same length as the number of layers in the model.
            A `1` at an index position indicates that the corresponding layer will use RoPE,
            while a `0` indicates that it's a NoPE layer.
        no_rope_layer_interval (`int`, *optional*, defaults to 4):
            If `no_rope_layers` is `None`, it will be created using a NoPE layer every
            `no_rope_layer_interval` layers.
        attention_chunk_size (`int`, *optional*, defaults to 8192):
            <TODO>
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        attn_temperature_tuning (`bool`, *optional*, defaults to `True`):
            Whether to dynamically scale the attention temperature for each query token based on sequence length.
            Recommended for long sequences (e.g., >32k tokens) to maintain stable output results.
        floor_scale (`int`, *optional*, defaults to 8192): TODO
        attn_scale (`int`, *optional*, defaults to 0.1): TODO

    Example:
    llama4_textpast_key_valueslayers.*.self_attn.q_projr   layers.*.self_attn.k_projlayers.*.self_attn.v_projlayers.*.self_attn.o_projr	   zlayers.*.input_layernorm.weightsequence_parallelz(layers.*.post_attention_layernorm.weightznorm.weightz-layers.*.feed_forward.shared_expert.gate_projlocal_colwisez+layers.*.feed_forward.shared_expert.up_projz-layers.*.feed_forward.shared_expert.down_projlocal_rowwise*layers.*.feed_forward.experts.gate_up_projlocal_packed_rowwise'layers.*.feed_forward.experts.down_projlayers.*.feed_forward.expertslocallayers.*.feed_forward.gate_projlayers.*.feed_forward.up_projlayers.*.feed_forward.down_projzlayers.*.feed_forwardgathergrouped_gemm	ep_router)rD   rE   rF   rG   rK   rM   rN   rP   rQ   rR   zlayers.*.feed_forward.routerc$                 Z   t        (|   d||||d|$ |!| _        |#| _        |"| _        || _        |
| _        || _        || _        || _	        || _
        || _        || _        d| _        ||}|| _        |	| _        || _        || _        || _        || _        || _        ||n| j                  | j                  z  | _        || _        || _        || _        || _        || _        || _        |g k(  rd }t9        | j                        D %cg c]  }%t;        |%dz   |z  dk7         }&}%|r|n|&| _        || _        ||ntA        t9        |dz
  ||            | _!        || _"        | | _#        | #| j<                  D 'cg c]  }'|'rdnd
 c}'| _#        tI        | jF                         y c c}%w c c}'w )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingsF       chunked_attentionfull_attentionr   )%r#   r$   attn_temperature_tuning
attn_scalefloor_scale
vocab_sizemax_position_embeddingsr   r   intermediate_size_mlpr   r   rope_scalingattention_biasnum_key_value_headsr   r   rms_norm_eps	use_cacher"   r   head_dimuse_qk_normnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noiseranger;   no_rope_layersinterleave_moe_layer_steplist
moe_layersattention_chunk_sizelayer_typesr   ))r%   rb   r   r   rd   r   r   rg   rj   r   rc   r   rh   ri   rW   rX   rY   rZ   r"   r   rl   rm   ru   rs   rk   rn   ro   rp   re   rr   no_rope_layer_intervalrv   rw   r_   ra   r`   r&   	layer_idxdefault_no_rope_layersno_roper'   s)                                           r(   r$   zLlama4TextConfig.__init__  s
   N 	 	
%%% 3		

 	
 (?$$&$'>$&!2%:"!2#6 (#&"5#6 $!2("$!2$,$8d>N>NRVRjRj>j&#6 !2$8!$8!#6  R!N QVVZVlVlPm"
CLCQ"88A=>"
 "
 1?nDZ)B& % e59;LNghi 	
 %9!&TXTgTg IPw#4DD D 	d../'"
  s   	F#8F()#i@ i       i @  0   (         silui   r1   r.   TNr[      Fi  r3   r[   r,   Nr[   TFgMbP?r3   NN   r|   NTr|   g?)
r4   r5   r6   r7   r9   keys_to_ignore_at_inferencer8   base_model_ep_planr$   r>   r?   s   @r(   rA   rA      s   qf J#4"5#Y#Y 	$Y 	$Y	
 	*+> 	34G 	* 	8 	6 	8 	56L 	2? 	( 	*? 	(  	*?!" 	 #( &/%.%.%.6D3A)1+:)8+:(3  # )!"#"" ! $If0 f0r)   rA   c                   R     e Zd ZdZdZddddZeedZdd	iZ		 	 	 	 	 	 d fd
	Z
 xZS )Llama4Configa  
    This is the configuration class to store the configuration of a [`Llama4Model`]. It is used to instantiate an
    Llama4 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vision_config (`Llama4VisionConfig`, *optional*):
            The Llama4 Vision config.
        text_config (`Llama4TextConfig`, *optional*):
            The Llama4 Text config.
        boi_token_index (`int`, *optional*, defaults to 200080):
            The begin-of-image token index to wrap the image prompt.
        eoi_token_index (`int`, *optional*, defaults to 200081):
            The end-of-image token index to wrap the image prompt.
        image_token_index (`int`, *optional*, defaults to 200092):
            The image token index to encode the image prompt.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.

    ```python
    >>> from transformers import Llama4Model, Llama4Config

    >>> # Initializing a Llama4 7B style configuration
    >>> configuration = Llama4Config()

    >>> # Initializing a model from the Llama4 7B style configuration
    >>> model = Llama4Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```llama4image_token_indexboi_token_indexeoi_token_index)image_token_idboi_token_ideoi_token_id)text_configr   zmulti_modal_projector.linear_1r
   c                    |%t               | _        t        j                  d       n8t	        |t
              rt        di || _        nt	        |t               r|| _        || _        || _        || _        |%t               | _
        t        j                  d       n8t	        |t
              rt        di || _
        nt	        |t              r|| _
        t        | 0  dd|i| y )Nz9vision_config is None, using default llama4 vision configz5text_config is None, using default llama4 text configrZ   r   )r   r   loggerinfo
isinstancedictr   r   r   rA   r   r#   r$   )	r%   r   r   r   r   r   rZ   r&   r'   s	           r(   r$   zLlama4Config.__init__  s      !3!5DKKSTt,!3!Dm!DD'9:!.D..!2/1DKKOPT*/>+>D%56*DK-@KFKr)   )NNi i i F)r4   r5   r6   r7   r9   attribute_maprA   r   sub_configsr8   r$   r>   r?   s   @r(   r   r     sZ    $L J-))M
 #3EWXK(-  !L Lr)   r   )r   rA   r   N)configuration_utilsr   r   utilsr   
get_loggerr4   r   r   rA   r   __all__r   r)   r(   <module>r      s\   $ K  
		H	%g#) g#T}0' }0@OL# OLd Er)   