
    rh7                        d dl mZmZ d dlZd dlmZ d dlmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZmZmZmZmZmZ  ej:                  e      Z G d de      Z  G d de      Z!d Z" G d de      Z# G d de      Z$ G d de      Z% G d de      Z& G d de      Z' G d de      Z(g dZ)y)    )CallableOptionalN)TransformersKwargs   )Cache)ALL_ATTENTION_FUNCTIONS)Unpack)logging   )LlamaPreTrainedModelLlamaRMSNormeager_attention_forward)
OlmoConfig)OlmoAttentionOlmoDecoderLayerOlmoForCausalLM	OlmoModelOlmoRotaryEmbeddingapply_rotary_pos_embc                        e Zd ZdZdZddddddddZdgd	gfd
dgd
gfd
gd
gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )Olmo2Configa  
    This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Olmo2Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.

    ```python
    >>> from transformers import Olmo2Model, Olmo2Config

    >>> # Initializing a Olmo2 7B style configuration
    >>> configuration = Olmo2Config()

    >>> # Initializing a model from the Olmo2 7B style configuration
    >>> model = Olmo2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    olmo2colwise_reprowwise_repcolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                     t        |   di d|d|d|d|d|d|d|d|d	|	d
|
d|d|d|d|d|d|d|d|| || _        | `y )N
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_range	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropout )super__init__rms_norm_epsclip_qkv)selfr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r:   kwargs	__class__s                        z/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/olmo2/modular_olmo2.pyr9   zOlmo2Config.__init__y   s    . 	 	
!	
#	
 0	
 0		

 !4	
 !4	
 "	
 %<	
 0	
  	
 &	
 &	
 &	
 !4	
 "	
  &!	
" *#	
$ 0'	
, )M    )i  i   i +      rA   Nsilui   g{Gz?T   Nig  Fg     @NF        gh㈵>)	__name__
__module____qualname____doc__
model_typebase_model_tp_planbase_model_pp_planr9   __classcell__r>   s   @r?   r   r      s    KZ J%2%2%2%2"+ )"+ &(9:#%568IJ!"_$56   $!). .r@   r   c                       e Zd Zd Zy)Olmo2RMSNormc                 "   |j                   }|j                  t        j                        }|j	                  d      j                  dd      }|t        j                  || j                  z         z  }| j                  |z  j                  |      S )Nr   T)keepdim)	dtypetotorchfloat32powmeanrsqrtvariance_epsilonweight)r<   r   input_dtypevariances       r?   forwardzOlmo2RMSNorm.forward   sy    #))%((7 $$Q',,R,>%Ht?T?T4T(UUm+//<<r@   N)rE   rF   rG   r^   r7   r@   r?   rO   rO      s    =r@   rO   c                     | dd| j                   d   dz  f   }| d| j                   d   dz  df   }t        j                  | |fd      S )z*Rotates half the hidden dims of the input..NrQ   r   )dim)shaperU   cat)xx1x2s      r?   rotate_halfrf      sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r@   c                   :    e Zd Zddedee   f fdZ	 	 ddej                  de	ej                  ej                  f   deej                     dee
   deej                     d	ee   d
e	ej                  eej                     ee	ej                        f   fdZ xZS )Olmo2Attentionconfig	layer_idxc                     t         |   ||       t        |j                  | j                  z  |j
                        | _        t        |j                  | j                  z  |j
                        | _        y )Nrj   )	r8   r9   rO   r)   head_dimr:   q_normr*   k_normr<   ri   rj   r>   s      r?   r9   zOlmo2Attention.__init__   s[    95"6#=#=#MvObObc"6#=#=#MvObObcr@   r   position_embeddingsr    past_key_valuecache_positionr=   returnc                 |   |j                   d d }g |d| j                  }| j                  | j                  |            }	| j	                  | j                  |            }
| j                  |      }|	j                  |      j                  dd      }	|
j                  |      j                  dd      }
|j                  |      j                  dd      }|\  }}t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                   sdn| j"                  | j$                  d|\  }} |j&                  g |d j)                         }| j+                  |      }||fS )NrQ   rC   r   )sincosrs   eagerrD   )dropoutscaling)ra   rm   rn   q_projro   k_projv_projview	transposer   updaterj   r   ri   _attn_implementationr   trainingr6   rz   reshape
contiguouso_proj)r<   r   rq   r    rr   rs   r=   input_shapehidden_shapequery_states
key_statesvalue_statesrw   rv   cache_kwargsattention_interfaceattn_outputattn_weightss                     r?   r^   zOlmo2Attention.forward   s    $))#2.88b8$--8{{4;;}#=>[[]!;<
{{=1#((6@@AF__\2<<QB
#((6@@AF&S#7jRUWZ#[ j%#&snUL'5'<'<ZW[WeWegs't$J(?;;++w6"9$++:Z:Z"[$7	%
  $}}C$2H2HLL	%
 	%
!\ *k));;;;FFHkk+.L((r@   )N)NN)rE   rF   rG   r   r   intr9   rU   Tensortupler   
LongTensorr	   r   r^   rL   rM   s   @r?   rh   rh      s    d{ dx} d +/59-)||-) #5<<#=>-) !.	-)
 !-) !!1!12-) +,-) 
u||Xell3XeELL>Q5RR	S-)r@   rh   c                   d    e Zd Zdedef fdZ	 	 	 	 	 	 ddej                  deej                     deej                     dee
   dee   d	eej                     d
eeej                  ej                  f      dee   deej                  eeej                  ej                  f      f   fdZ xZS )Olmo2DecoderLayerri   rj   c                     t         |   ||       t        |j                  |j                        | _        t        |j                  |j                        | _        t        ||      | _        | `	y )Nrl   eps)ri   rj   )
r8   r9   rO   r&   r:   post_attention_layernormpost_feedforward_layernormrh   	self_attninput_layernormrp   s      r?   r9   zOlmo2DecoderLayer.__init__   s_    95(4V5G5GVM`M`(a%*6v7I7IvObOb*c''vK r@   r   r    position_idsrr   r.   rs   rq   r=   rt   c                     |}	 | j                   d|||||||d|\  }}
| j                  |      }|	|z   }|}	| j                  |      }| j                  |      }|	|z   }|S )N)r   r    r   rr   r.   rs   rq   r7   )r   r   mlpr   )r<   r   r    r   rr   r.   rs   rq   r=   residual_s              r?   r^   zOlmo2DecoderLayer.forward   s     !)4>> 	
')%)) 3	
 	
q 55mD =0 !/77F =0r@   )NNNFNN)rE   rF   rG   r   r   r9   rU   r   r   r   r   boolr   r	   r   FloatTensorr^   rL   rM   s   @r?   r   r      s    !{ !s ! 2637*.$)59KO|| !. u//0	
 ! D> !!1!12 &eELL%,,,F&GH +, 
u  (51B1BEDUDU1U+V"WW	Xr@   r   c                       e Zd Zy)Olmo2RotaryEmbeddingNrE   rF   rG   r7   r@   r?   r   r   !      r@   r   c                       e Zd Zy)Olmo2PreTrainedModelNr   r7   r@   r?   r   r   %  r   r@   r   c                   $     e Zd Zdef fdZ xZS )
Olmo2Modelri   c           	         t         |   |       t        |j                  |j                        | _        t        j                  t        |j                        D cg c]  }t        ||       c}      | _        y c c}w )Nr   )r8   r9   rO   r&   r:   r#   nn
ModuleListranger(   r   r"   rp   s      r?   r9   zOlmo2Model.__init__,  s^      !3!39L9LM	mmCHIaIaCbcivy1c
cs   A=)rE   rF   rG   r   r9   rL   rM   s   @r?   r   r   +  s    
{ 
 
r@   r   c                       e Zd Zy)Olmo2ForCausalLMNr   r7   r@   r?   r   r   5  r   r@   r   )r   r   r   r   )*typingr   r   rU   torch.nnr   transformers.utils.genericr   cache_utilsr   modeling_utilsr   processing_utilsr	   utilsr
   llama.modeling_llamar   r   r   olmo.configuration_olmor   olmo.modeling_olmor   r   r   r   r   r   
get_loggerrE   loggerr   rO   rf   rh   r   r   r   r   r   __all__r7   r@   r?   <module>r      s    %   9   5 &  ^ ^ 0  
		H	%L* Lb=< =(3)] 3)r&( &R	. 		/ 	
 
	 	r@   