from typing import Callable, Optional

import torch
import torch.utils.checkpoint
from torch import nn

from ...cache_utils import Cache, DynamicCache
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
    BaseModelOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, logging
from ...utils.generic import check_model_inputs
from ..llama.modeling_llama import (
    LlamaAttention,
    LlamaDecoderLayer,
    LlamaForCausalLM,
    LlamaForQuestionAnswering,
    LlamaForSequenceClassification,
    LlamaForTokenClassification,
    LlamaMLP,
    LlamaPreTrainedModel,
    apply_rotary_pos_emb,
    eager_attention_forward,
)
from ..mistral.modeling_mistral import MistralModel
from .configuration_qwen2 import Qwen2Config


logger = logging.get_logger(__name__)


class Qwen2MLP(LlamaMLP):
    def __init__(self, config):
        super().__init__(config)
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)


class Qwen2Attention(LlamaAttention):
    def __init__(self, config: Qwen2Config, layer_idx: int):
        super().__init__(config, layer_idx)
        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
        self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=self.sliding_window,  # main diff with Llama
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


class Qwen2DecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: Qwen2Config, layer_idx: int):
        super().__init__()
        self.attention_type = config.layer_types[layer_idx]


class Qwen2PreTrainedModel(LlamaPreTrainedModel):
    pass


class Qwen2Model(MistralModel):
    def __init__(self, config: Qwen2Config):
        super().__init__(config)
        self.has_sliding_layers = "sliding_attention" in self.config.layer_types

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> BaseModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # It may already have been prepared by e.g. `generate`
        if not isinstance(causal_mask_mapping := attention_mask, dict):
            # Prepare mask arguments
            mask_kwargs = {
                "config": self.config,
                "input_embeds": inputs_embeds,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "position_ids": position_ids,
            }
            # Create the masks
            causal_mask_mapping = {
                "full_attention": create_causal_mask(**mask_kwargs),
            }
            # The sliding window alternating layers are not always activated depending on the config
            if self.has_sliding_layers:
                causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=causal_mask_mapping[decoder_layer.attention_type],
                position_ids=position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
        )


class Qwen2ForCausalLM(LlamaForCausalLM):
    pass


class Qwen2ForSequenceClassification(LlamaForSequenceClassification):
    pass


class Qwen2ForTokenClassification(LlamaForTokenClassification):
    pass


class Qwen2ForQuestionAnswering(LlamaForQuestionAnswering):
    pass


__all__ = [
    "Qwen2PreTrainedModel",
    "Qwen2Model",
    "Qwen2ForCausalLM",
    "Qwen2ForSequenceClassification",
    "Qwen2ForTokenClassification",
    "Qwen2ForQuestionAnswering",
]
