# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2-VL model."""

from dataclasses import dataclass
from typing import Any, Callable, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import LayerNorm

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
    TransformersKwargs,
    auto_docstring,
    can_return_tuple,
    is_torchdynamo_compiling,
    logging,
)
from .configuration_qwen2_vl import Qwen2VLConfig, Qwen2VLTextConfig, Qwen2VLVisionConfig


logger = logging.get_logger(__name__)


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for Llava outputs, with hidden states and attentions.
    """
)
class Qwen2VLModelOutputWithPast(ModelOutput):
    r"""
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
        The rope index difference between sequence length and multimodal rope.
    """

    last_hidden_state: torch.FloatTensor = None
    past_key_values: Optional[list[torch.FloatTensor]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for Qwen2VL causal language model (or autoregressive) outputs.
    """
)
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
        The rope index difference between sequence length and multimodal rope.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[list[torch.FloatTensor]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None


class Qwen2VLRotaryEmbedding(nn.Module):
    def __init__(self, config: Qwen2VLTextConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        # In contrast to other models, Qwen2_VL has different position ids for the grids
        # So we expand the inv_freq to shape (3, ...)
        inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
        position_ids_expanded = position_ids[:, :, None, :].float()  # shape (3, bs, 1, positions)

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
    """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).

    Explanation:
        Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
        sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
        vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
        Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
        For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
        height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
        difference with modern LLMs.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        mrope_section(`List(int)`):
            Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    mrope_section = mrope_section * 2
    cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )
    sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def apply_rotary_pos_emb_vision(
    q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
    orig_q_dtype = q.dtype
    orig_k_dtype = k.dtype
    q, k = q.float(), k.float()
    cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    q_embed = q_embed.to(orig_q_dtype)
    k_embed = k_embed.to(orig_k_dtype)
    return q_embed, k_embed


class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs


class PatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 14,
        temporal_patch_size: int = 2,
        in_channels: int = 3,
        embed_dim: int = 1152,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.in_channels = in_channels
        self.embed_dim = embed_dim

        kernel_size = [temporal_patch_size, patch_size, patch_size]
        self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        target_dtype = self.proj.weight.dtype
        hidden_states = hidden_states.view(
            -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
        )
        hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
        return hidden_states


class PatchMerger(nn.Module):
    def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        self.ln_q = LayerNorm(context_dim, eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, dim),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
        return x


class VisionMlp(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
        super().__init__()
        self.fc1 = nn.Linear(dim, hidden_dim)
        self.act = ACT2FN[hidden_act]
        self.fc2 = nn.Linear(hidden_dim, dim)

    def forward(self, x) -> torch.Tensor:
        return self.fc2(self.act(self.fc1(x)))


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class VisionAttention(nn.Module):
    def __init__(self, config: Qwen2VLVisionConfig) -> None:
        super().__init__()
        self.dim = config.embed_dim
        self.num_heads = config.num_heads
        self.head_dim = self.dim // self.num_heads
        self.num_key_value_groups = 1  # needed for eager attention
        self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
        self.proj = nn.Linear(self.dim, self.dim)
        self.scaling = self.head_dim**-0.5
        self.config = config
        self.attention_dropout = 0.0
        self.is_causal = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        query_states, key_states, value_states = (
            self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        )
        if position_embeddings is None:
            logger.warning_once(
                "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
                "through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
                "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
                "removed and `position_embeddings` will be mandatory."
            )
            emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)

        query_states = query_states.transpose(0, 1).unsqueeze(0)
        key_states = key_states.transpose(0, 1).unsqueeze(0)
        value_states = value_states.transpose(0, 1).unsqueeze(0)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        if self.config._attn_implementation == "flash_attention_2":
            # Flash Attention 2: Use cu_seqlens for variable length attention
            max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
            attn_output, _ = attention_interface(
                self,
                query_states,
                key_states,
                value_states,
                attention_mask=None,
                scaling=self.scaling,
                dropout=0.0 if not self.training else self.attention_dropout,
                cu_seq_lens_q=cu_seqlens,
                cu_seq_lens_k=cu_seqlens,
                max_length_q=max_seqlen,
                max_length_k=max_seqlen,
                is_causal=False,
                **kwargs,
            )
        else:
            # Other implementations: Process each chunk separately
            lengths = cu_seqlens[1:] - cu_seqlens[:-1]
            splits = [
                torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
            ]

            attn_outputs = [
                attention_interface(
                    self,
                    q,
                    k,
                    v,
                    attention_mask=None,
                    scaling=self.scaling,
                    dropout=0.0 if not self.training else self.attention_dropout,
                    is_causal=False,
                    **kwargs,
                )[0]
                for q, k, v in zip(*splits)
            ]
            attn_output = torch.cat(attn_outputs, dim=1)

        attn_output = attn_output.reshape(seq_length, -1).contiguous()
        attn_output = self.proj(attn_output)
        return attn_output


class Qwen2VLVisionBlock(GradientCheckpointingLayer):
    def __init__(self, config, attn_implementation: str = "sdpa") -> None:
        super().__init__()
        self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
        self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
        mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)

        self.attn = VisionAttention(config=config)
        self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.Tensor:
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states),
            cu_seqlens=cu_seqlens,
            rotary_pos_emb=rotary_pos_emb,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
        return hidden_states


# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm
class Qwen2RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Qwen2RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
class Qwen2MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


class Qwen2VLAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: Qwen2VLTextConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout
        self.rope_scaling = config.rope_scaling
        self.scaling = self.head_dim**-0.5

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None

        self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_multimodal_rotary_pos_emb(
            query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
        )

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=self.sliding_window,
            position_ids=position_ids,  # pass positions for FA2
            **kwargs,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


class Qwen2VLDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: Qwen2VLTextConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
            logger.warning_once(
                f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
                "unexpected results may be encountered."
            )
        self.self_attn = Qwen2VLAttention(config, layer_idx)

        self.mlp = Qwen2MLP(config)
        self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.attention_type = config.layer_types[layer_idx]

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
            position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs


@auto_docstring
class Qwen2VLPreTrainedModel(PreTrainedModel):
    config: Qwen2VLConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn = True
    _supports_sdpa = True

    _can_compile_fullgraph = True
    _supports_attention_backend = True


@auto_docstring
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
    config: Qwen2VLVisionConfig
    _no_split_modules = ["Qwen2VLVisionBlock"]

    def __init__(self, config) -> None:
        super().__init__(config)
        self.spatial_merge_size = config.spatial_merge_size

        self.patch_embed = PatchEmbed(
            patch_size=config.patch_size,
            temporal_patch_size=config.temporal_patch_size,
            in_channels=config.in_channels,
            embed_dim=config.embed_dim,
        )

        head_dim = config.embed_dim // config.num_heads
        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList([Qwen2VLVisionBlock(config) for _ in range(config.depth)])
        self.merger = PatchMerger(
            dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
        )
        self.gradient_checkpointing = False

    def get_dtype(self) -> torch.dtype:
        return self.blocks[0].mlp.fc2.weight.dtype

    def get_device(self) -> torch.device:
        return self.blocks[0].mlp.fc2.weight.device

    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    @auto_docstring
    def forward(
        self,
        hidden_states: torch.Tensor,
        grid_thw: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        r"""
        grid_thw (`torch.LongTensor` of shape `(num_images, 3)`):
            The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
        """
        hidden_states = self.patch_embed(hidden_states)
        rotary_pos_emb = self.rot_pos_emb(grid_thw)
        emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
        position_embeddings = (emb.cos(), emb.sin())

        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
            dim=0,
            # Select dtype based on the following factors:
            #  - FA2 requires that cu_seqlens_q must have dtype int32
            #  - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
            # See https://github.com/huggingface/transformers/pull/34852 for more information
            dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for blk in self.blocks:
            hidden_states = blk(
                hidden_states,
                cu_seqlens=cu_seqlens,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        return self.merger(hidden_states)


@auto_docstring
class Qwen2VLTextModel(Qwen2VLPreTrainedModel):
    config: Qwen2VLTextConfig

    def __init__(self, config: Qwen2VLTextConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
        self.has_sliding_layers = "sliding_attention" in self.config.layer_types

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # torch.jit.trace() doesn't support cache objects in the output
        if use_cache and past_key_values is None and not torch.jit.is_tracing():
            past_key_values = DynamicCache()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        # the hard coded `3` is for temporal, height and width.
        if position_ids is None:
            position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
        elif position_ids.ndim == 2:
            position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)

        # NOTE: we need to pass text position ids for packing. Qwen2-VL uses 3D positions
        # where each dim indicates visual spatial positions for temporal/height/width grids.
        # There are two scenarios when FA2-like packed masking might be activated.
        # 1. User specifically passed packed `position_ids` and no attention mask.
        #    In this case we expect the useer to create correct position ids for all 3 grids
        #    and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
        # 2. User runs forward with no attention mask and no position ids. In this case, position ids
        #    are prepared by the model (`get_rope_index`) as `[4, bs, seq-len]` tensor. Text-only positions are
        #    prepended by us when creating positions so that the mask is constructed correctly. NOTE: failing to pass
        #    text-only positions will cause incorrect mask construction, do not change `prepare_input_for_generation`
        if position_ids.ndim == 3 and position_ids.shape[0] == 4:
            text_position_ids = position_ids[0]
            position_ids = position_ids[1:]
        else:
            text_position_ids = position_ids[0]

        # It may already have been prepared by e.g. `generate`
        if not isinstance(causal_mask_mapping := attention_mask, dict):
            # Prepare mask arguments
            mask_kwargs = {
                "config": self.config,
                "input_embeds": inputs_embeds,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "position_ids": text_position_ids,
            }
            # Create the masks
            causal_mask_mapping = {
                "full_attention": create_causal_mask(**mask_kwargs),
            }
            # The sliding window alternating layers are not always activated depending on the config
            if self.has_sliding_layers:
                causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask_mapping[decoder_layer.attention_type],
                position_ids=text_position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


@auto_docstring
class Qwen2VLModel(Qwen2VLPreTrainedModel):
    base_model_prefix = ""
    _checkpoint_conversion_mapping = {"^model": "language_model"}

    def __init__(self, config: Qwen2VLConfig):
        super().__init__(config)
        self.visual = Qwen2VisionTransformerPretrainedModel._from_config(config.vision_config)
        self.language_model = Qwen2VLTextModel._from_config(config.text_config)
        self.rope_deltas = None  # cache rope_deltas here

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.language_model = decoder

    def get_decoder(self):
        return self.language_model

    def get_rope_index(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Calculate the 3D rope index based on image and video's temporal, height and width in LLM.

        Explanation:
            Each embedding sequence contains vision embedding and text embedding or just contains text embedding.

            For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
            Examples:
                input_ids: [T T T T T], here T is for text.
                temporal position_ids: [0, 1, 2, 3, 4]
                height position_ids: [0, 1, 2, 3, 4]
                width position_ids: [0, 1, 2, 3, 4]

            For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
            and 1D rotary position embedding for text part.
            Examples:
                Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
                input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
                vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
                vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
                vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
                text temporal position_ids: [3, 4, 5, 6, 7]
                text height position_ids: [3, 4, 5, 6, 7]
                text width position_ids: [3, 4, 5, 6, 7]
                Here we calculate the text start position_ids as the max vision position_ids plus 1.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
                it.
            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
                The temporal, height and width of feature shape of each image in LLM.
            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
                The temporal, height and width of feature shape of each video in LLM.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

        Returns:
            position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
            mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
        """
        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id
        mrope_position_deltas = []
        if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
            total_input_ids = input_ids
            if attention_mask is None:
                attention_mask = torch.ones_like(total_input_ids)
            position_ids = torch.ones(
                3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
            )
            image_index, video_index = 0, 0
            for i, input_ids in enumerate(total_input_ids):
                input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image
                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = (
                    torch.arange(input_ids.shape[1], device=input_ids.device)
                    .view(1, 1, -1)
                    .expand(3, input_ids.shape[0], -1)
                )
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas

    def get_video_features(
        self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
    ):
        """
        Encodes videos into continuous embeddings that can be forwarded to the language model.

        Args:
            pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
                The tensors corresponding to the input videos.
            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
                The temporal, height and width of feature shape of each video in LLM.
        """
        pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
        video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
        split_sizes = (video_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
        video_embeds = torch.split(video_embeds, split_sizes)
        return video_embeds

    def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
        """
        Encodes images into continuous embeddings that can be forwarded to the language model.

        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
                The tensors corresponding to the input images.
            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
                The temporal, height and width of feature shape of each image in LLM.
        """
        pixel_values = pixel_values.type(self.visual.dtype)
        image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
        split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
        image_embeds = torch.split(image_embeds, split_sizes)
        return image_embeds

    def get_placeholder_mask(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor,
        image_features: torch.FloatTensor = None,
        video_features: torch.FloatTensor = None,
    ):
        """
        Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
        equal to the length of multimodal features. If the lengths are different, an error is raised.
        """
        if input_ids is None:
            special_image_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_image_mask = special_image_mask.all(-1)
            special_video_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_video_mask = special_video_mask.all(-1)
        else:
            special_image_mask = input_ids == self.config.image_token_id
            special_video_mask = input_ids == self.config.video_token_id

        n_image_tokens = special_image_mask.sum()
        special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel():
            raise ValueError(
                f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}"
            )

        n_video_tokens = special_video_mask.sum()
        special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel():
            raise ValueError(
                f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}"
            )

        return special_image_mask, special_video_mask

    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, Qwen2VLModelOutputWithPast]:
        r"""
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
            The temporal, height and width of feature shape of each video in LLM.
        rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            The rope index difference between sequence length and multimodal rope.
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if pixel_values is not None:
            image_embeds = self.get_image_features(pixel_values, image_grid_thw)
            image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            image_mask, _ = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

        if pixel_values_videos is not None:
            video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
            video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            _, video_mask = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

        if position_ids is None:
            if self.rope_deltas is None or cache_position is None or cache_position[0] == 0:
                position_ids, rope_deltas = self.get_rope_index(
                    input_ids, image_grid_thw, video_grid_thw, attention_mask
                )
                self.rope_deltas = rope_deltas
            # then use the prev pre-calculated rope-deltas to get the correct position ids
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, 1, -1).expand(3, batch_size, -1)
                if cache_position is not None:
                    delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
                else:
                    delta = torch.zeros((batch_size, seq_length), device=inputs_embeds.device)
                delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
                position_ids += delta.to(position_ids.device)

        outputs = self.language_model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
            cache_position=cache_position,
            **kwargs,
        )

        output = Qwen2VLModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.rope_deltas,
        )
        return output if return_dict else output.to_tuple()


class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel, GenerationMixin):
    _checkpoint_conversion_mapping = {
        "^visual": "model.visual",
        r"^model(?!\.(language_model|visual))": "model.language_model",
    }
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = Qwen2VLModel(config)
        self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)

        self.post_init()

    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.model.set_decoder(decoder)

    def get_decoder(self):
        return self.model.get_decoder()

    def get_video_features(
        self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
    ):
        return self.model.get_video_features(pixel_values_videos, video_grid_thw)

    def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
        return self.model.get_image_features(pixel_values, image_grid_thw)

    # Make modules available throught conditional class for BC
    @property
    def language_model(self):
        return self.model.language_model

    @property
    def visual(self):
        return self.model.visual

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, Qwen2VLCausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
            The temporal, height and width of feature shape of each video in LLM.
        rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            The rope index difference between sequence length and multimodal rope.

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

        >>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
        >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")

        >>> messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": "What is shown in this image?"},
                ],
            },
        ]
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.model(
            input_ids=input_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)

        return Qwen2VLCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=outputs.rope_deltas,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        pixel_values=None,
        pixel_values_videos=None,
        image_grid_thw=None,
        video_grid_thw=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            position_ids=position_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            use_cache=use_cache,
            **kwargs,
        )

        # Qwen2-VL position_ids are prepareed with rope_deltas in forward
        if position_ids is None:
            # Calculate RoPE index once per generation in the pre-fill stage only.
            # When compiling, we can't check tensor values thus we check only input length
            # It is safe to assume that `length!=1` means we're in pre-fill because compiled
            # models currently cannot do asssisted decoding
            prefill_compiled_stage = is_torchdynamo_compiling() and (
                (input_ids is not None and input_ids.shape[1] != 1)
                or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
            )
            prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
                (cache_position is not None and cache_position[0] == 0)
                or (past_key_values is None or past_key_values.get_seq_length() == 0)
            )
            if (prefill_compiled_stage or prefill_noncompiled_stage) or self.model.rope_deltas is None:
                vision_positions, rope_deltas = self.model.get_rope_index(
                    model_inputs.get("input_ids", None),
                    image_grid_thw=image_grid_thw,
                    video_grid_thw=video_grid_thw,
                    attention_mask=attention_mask,
                )
                self.model.rope_deltas = rope_deltas
            # then use the prev pre-calculated rope-deltas to get the correct position ids
            elif "position_ids" in model_inputs:
                position_ids = model_inputs["position_ids"][None, ...]
                delta = self.model.rope_deltas
                delta = delta.repeat_interleave(position_ids.shape[1] // delta.shape[0], dim=0)
                vision_positions = position_ids + delta.expand_as(position_ids)
                vision_positions = vision_positions.expand(3, vision_positions.shape[1], -1)

            # Concatenate "text + vision" positions into [4, bs, seq-len]
            if "position_ids" not in model_inputs:
                text_positions = torch.arange(input_ids, device=input_ids.device)[None, None, :]
            else:
                text_positions = model_inputs["position_ids"][None, ...]
            model_inputs["position_ids"] = torch.cat([text_positions, vision_positions], dim=0)

        if model_inputs["cache_position"][0] != 0:
            model_inputs["pixel_values"] = None
            model_inputs["pixel_values_videos"] = None

        return model_inputs

    def _get_image_nums_and_video_nums(
        self,
        input_ids: Optional[torch.LongTensor],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
        These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.

        Returns:
            image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
            video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
        """
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id

        if inputs_embeds is not None:
            vision_start_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
            image_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
            video_mask = (
                inputs_embeds
                == self.get_input_embeddings()(
                    torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device)
                )
            )[..., 0]
        else:
            vision_start_mask = input_ids == vision_start_token_id
            image_mask = input_ids == image_token_id
            video_mask = input_ids == video_token_id

        vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
        image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
        video_nums = torch.sum(vision_first_mask & video_mask, dim=1)

        return image_nums, video_nums

    def _expand_inputs_for_generation(
        self,
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> tuple[torch.LongTensor, dict[str, Any]]:
        # Overwritten -- Support for expanding tensors without a batch size dimension
        # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
        # pixel_values.shape[0] is sum(seqlen_images for samples)
        # image_grid_thw.shape[0] is sum(num_images for samples)

        if expand_size == 1:
            return input_ids, model_kwargs

        visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]

        def _expand_dict_for_generation_visual(dict_to_expand):
            image_grid_thw = model_kwargs.get("image_grid_thw", None)
            video_grid_thw = model_kwargs.get("video_grid_thw", None)
            image_nums, video_nums = self._get_image_nums_and_video_nums(
                input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
            )

            def _repeat_interleave_samples(x, lengths, repeat_times):
                samples = torch.split(x, lengths)
                repeat_args = [repeat_times] + [1] * (x.dim() - 1)
                result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
                return result

            for key in dict_to_expand:
                if key == "pixel_values":
                    # split images into samples
                    samples = torch.split(image_grid_thw, list(image_nums))
                    # compute the sequence length of images for each sample
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "image_grid_thw":
                    # get the num of images for each sample
                    lengths = list(image_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "pixel_values_videos":
                    samples = torch.split(video_grid_thw, list(video_nums))
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "video_grid_thw":
                    lengths = list(video_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "second_per_grid_ts":
                    if not isinstance(dict_to_expand[key], list):
                        raise TypeError(
                            f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead."
                        )
                    tensor = torch.tensor(dict_to_expand[key])
                    lengths = list(video_nums)
                    tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size)
                    dict_to_expand[key] = tensor.tolist()
            return dict_to_expand

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                    and key not in visual_keys
                ):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

        model_kwargs = _expand_dict_for_generation_visual(model_kwargs)

        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])

        return input_ids, model_kwargs


__all__ = ["Qwen2VLForConditionalGeneration", "Qwen2VLModel", "Qwen2VLPreTrainedModel", "Qwen2VLTextModel"]
