
    rh
.                     p    d Z ddlmZmZ ddlmZ ddlmZ  ej                  e	      Z
 G d de      ZdgZy)zQwen3 model configuration   )PretrainedConfiglayer_type_validation)rope_config_validation)loggingc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )Qwen3Configa  
    This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
    Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 151936):
            Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Qwen3Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention (SWA) window size. If not specified, will default to `4096`.
        max_window_layers (`int`, *optional*, defaults to 28):
            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
            additional layer afterwards will use SWA (Sliding Window Attention).
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import Qwen3Model, Qwen3Config

    >>> # Initializing a Qwen3 style configuration
    >>> configuration = Qwen3Config()

    >>> # Initializing a model from the Qwen3-8B style configuration
    >>> model = Qwen3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```qwen3past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         |	| _        || _        || _        || _        || _        || _        | j                  r|nd | _        || _        ||}|| _	        || _
        || _        |
| _        || _        || _        || _        || _        || _        || _        | j                   *d| j                   v r| j                   d   | j                   d<   t'        |        || _        | j(                  Et+        | j                        D cg c]!  }| j                  || j                  k\  rdnd# c}| _        t-        | j(                         t/        | `  dd|i| y c c}w )Ntype	rope_typesliding_attentionfull_attentiontie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsuse_sliding_windowsliding_windowmax_window_layersnum_key_value_headshead_dim
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutr   layer_typesranger   super__init__)selfr   r   r   r   r    r$   r%   r&   r   r'   r(   r)   r   r*   r+   r,   r!   r"   r#   r.   r-   kwargsi	__class__s                           /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/qwen3/configuration_qwen3.pyr1   zQwen3Config.__init__   s   2 %'>$&!2!2#6 "4040G0GnT!2 &"5#6  $!2("$(,!2 (Vt7H7H-H-1->->v-FDk*t$&#
 t556	   &&2qD<R<R7R $%& D 	d../ 	
 3	
	
 s   &E)iQ    i V      r8   r8      silui   g{Gz?gư>TFg     @NFFr7      Ng        )
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr1   __classcell__)r5   s   @r6   r   r      s    l\ J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56  %! -D
 D
    r   N)r?   configuration_utilsr   r   modeling_rope_utilsr   utilsr   
get_loggerr<   loggerr   __all__r   rE   r6   <module>rL      s@      J 9  
		H	%F
" F
R /rE   