
    rha                         d dl mZmZ ddlmZ ddlmZ ddlmZ erddl	m
Z
  ej                  e      Z G d d	e      Zd	gZy
)    )TYPE_CHECKINGOptional   )PretrainedConfig)logging   )CONFIG_MAPPING)SuperPointConfigc                        e Zd ZdZdZ	 	 	 	 	 	 	 	 ddddedeee      deee      ded	ed
e	de	f fdZ
ed        Z xZS )SuperGlueConfiga	  
    This is the configuration class to store the configuration of a [`SuperGlueModel`]. It is used to instantiate a
    SuperGlue model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SuperGlue
    [magic-leap-community/superglue_indoor](https://huggingface.co/magic-leap-community/superglue_indoor) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        keypoint_detector_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `SuperPointConfig`):
            The config object or dictionary of the keypoint detector.
        hidden_size (`int`, *optional*, defaults to 256):
            The dimension of the descriptors.
        keypoint_encoder_sizes (`list[int]`, *optional*, defaults to `[32, 64, 128, 256]`):
            The sizes of the keypoint encoder layers.
        gnn_layers_types (`list[str]`, *optional*, defaults to `['self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross']`):
            The types of the GNN layers. Must be either 'self' or 'cross'.
        num_attention_heads (`int`, *optional*, defaults to 4):
            The number of heads in the GNN layers.
        sinkhorn_iterations (`int`, *optional*, defaults to 100):
            The number of Sinkhorn iterations.
        matching_threshold (`float`, *optional*, defaults to 0.0):
            The matching threshold.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Examples:
        ```python
        >>> from transformers import SuperGlueConfig, SuperGlueModel

        >>> # Initializing a SuperGlue superglue style configuration
        >>> configuration = SuperGlueConfig()

        >>> # Initializing a model from the superglue style configuration
        >>> model = SuperGlueModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    	supergluekeypoint_detector_configr
   hidden_sizekeypoint_encoder_sizesgnn_layers_typesnum_attention_headssinkhorn_iterationsmatching_thresholdinitializer_rangec	                    ||nddgdz  | _         t        d | j                   D              st        d      ||z  dk7  rt        d      ||ng d| _        || _        || _        || _         || _        || _        || _        t        |t              r&|j                  d	d
      |d	<   t        |d	      di |}|t        d
          }|| _        || _        d| _        d| _        t!        
| D  di |	 y )Nselfcross	   c              3   $   K   | ]  }|d v  
 yw))r   r   N ).0
layer_types     /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/superglue/configuration_superglue.py	<genexpr>z+SuperGlueConfig.__init__.<locals>.<genexpr>V   s     [z:!22[s   z5All gnn_layers_types must be either 'self' or 'cross'r   z8hidden_size % num_attention_heads is different from zero)    @         
model_type
superpointFr   )r   all
ValueErrorr   r   r   r   r   
isinstancedictgetr	   r   r   attention_probs_dropout_prob
is_decodersuper__init__)r   r   r   r   r   r   r   r   r   kwargs	__class__s             r   r.   zSuperGlueConfig.__init__H   s-    5E4P 0W]_fVgjkVk[TEZEZ[[TUU,,1WXX '=&H"N` 	# '&<# 0#6 #6 "4.55M5Q5QR^`l5m$\2'56N|6\'] (*($ $+'5l'C'E$(@%!2,-)"6"    c                 0    dt        | j                        iS )Nr   )typer   )r   s    r   sub_configszSuperGlueConfig.sub_configsu   s    *D1N1N,OPPr1   )Nr#   NN   d   g        g{Gz?)__name__
__module____qualname____doc__r$   intr   liststrfloatr.   propertyr4   __classcell__)r0   s   @r   r   r      s    (T J 8<6:04#$#&$'#'+#"4+# +# !)c 3	+#
 #49-+# !+# !+# "+# !+#Z Q Qr1   r   N)typingr   r   configuration_utilsr   utilsr   autor	   r%   r
   
get_loggerr7   loggerr   __all__r   r1   r   <module>rH      sI    + 3  ! -			H	%\Q& \Q~ 
r1   