
    rh/E                         d Z ddlmZmZ ddlZddlmZmZm	Z	 ddl
mZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZ  ej@                  e!      Z" e       rddl#Z# G d	 d
e      Z$d
gZ%y)z"Image processor class for TextNet.    )OptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbget_resize_output_image_sizeresizeto_channel_dimension_format)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_kwargsvalidate_preprocess_arguments)
TensorTypeis_vision_availableloggingc            $           e Zd ZdZdgZdddej                  dddddeedfde	d	e
eeef      d
edede	de
eeef      de	deeef   de	de
eeee   f      de
eeee   f      de	ddf fdZej                  ddfdej&                  d	eeef   dede
eeef      de
eeef      dej&                  fdZdddddddddddddej,                  dfdede
e	   d	e
eeef      d
e
e   dede
e	   de
e   de
e	   de
e   de
e	   de
eeee   f      de
eeee   f      de
e	   de
eeef      de
e   de
eeef      dej4                  j4                  f"dZ xZS )TextNetImageProcessora(  
    Constructs a TextNet image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`dict[str, int]` *optional*, defaults to `{"shortest_edge": 640}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        size_divisor (`int`, *optional*, defaults to 32):
            Ensures height and width are rounded to a multiple of this value after resizing.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `False`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
            `preprocess` method.
        crop_size (`dict[str, int]` *optional*, defaults to 224):
            Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
            method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTN    Fgp?	do_resizesizesize_divisorresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc                 T   t        |   d
i | ||nddi}t        |d      }||nddd}t        |d      }|| _        || _        || _        || _        || _        || _        || _	        || _
        |	| _        |
|
nt        | _        ||nt        | _        || _        g d	| _        y )Nshortest_edgei  F)default_to_square   )heightwidthr%   )
param_name)imagesr    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   return_tensorsdata_formatinput_data_format )super__init__r   r    r!   r"   r#   r$   r%   r&   r'   r(   r   r)   r   r*   r+   _valid_processor_keys)selfr    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   kwargs	__class__s                 /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/textnet/image_processing_textnet.pyr:   zTextNetImageProcessor.__init__^   s      	"6"'tos-CTU;!*!6IsUX<Y	!)D	"	( ,"$,((2(>*DY&/&;AU,&
"    imager6   r7   c                 `   d|v r|d   }nd|v rd|v r|d   |d   f}nt        d      t        |||d      \  }}|| j                  z  dk7  r|| j                  || j                  z  z
  z  }|| j                  z  dk7  r|| j                  || j                  z  z
  z  }t        |f||f|||d|S )	a  
        Resize an image. The shortest edge of the image is resized to size["shortest_edge"] , with the longest edge
        resized to keep the input aspect ratio. Both the height and width are resized to be divisible by 32.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]`):
                Size of the output image.
            size_divisor (`int`, *optional*, defaults to `32`):
                Ensures height and width are rounded to a multiple of this value after resizing.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
            default_to_square (`bool`, *optional*, defaults to `False`):
                The value to be passed to `get_size_dict` as `default_to_square` when computing the image size. If the
                `size` argument in `get_size_dict` is an `int`, it determines whether to default to a square image or
                not.Note that this attribute is not used in computing `crop_size` via calling `get_size_dict`.
        r.   r1   r2   zASize must contain either 'shortest_edge' or 'height' and 'width'.F)r!   r7   r/   r   )r!   r#   r6   r7   )
ValueErrorr
   r"   r   )	r<   rA   r!   r#   r6   r7   r=   r1   r2   s	            r?   r   zTextNetImageProcessor.resize   s    > d"(D'T/NDM2D`aa40AUZ
 D%%%*d''6D4E4E+EFFF4$$$)T&&%$2C2C*CDDE
%#/
 
 	
r@   r4   r5   c                    ||n| j                   }||n| j                  }t        |dd      }||n| j                  }||n| j                  }||n| j
                  }||n| j                  }t        |dd      }||n| j                  }|	|	n| j                  }	|
|
n| j                  }
||n| j                  }||n| j                  }||n| j                  }t        |j                         | j                         t!        |      }t#        |      st%        d      t'        ||	|
|||||||
       |r|D cg c]  }t)        |       }}|D cg c]  }t+        |       }}t-        |d	         r|rt.        j1                  d
       |t3        |d	         }g }|D ]m  }|r| j5                  ||||      }|r| j7                  |||      }|r| j9                  ||	|      }|
r| j;                  ||||      }|j=                  |       o |D cg c]  }t?        |||       }}d|i}tA        ||      S c c}w c c}w c c}w )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            size_divisor (`int`, *optional*, defaults to `32`):
                Ensures height and width are rounded to a multiple of this value after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        r!   F)r3   r/   r%   T)captured_kwargsvalid_processor_keyszkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r&   r'   r(   r)   r*   r$   r%   r    r!   r#   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)rA   r!   r#   r7   )rA   r!   r7   )rA   scaler7   )rA   meanstdr7   )input_channel_dimr   )datatensor_type)!r    r!   r   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r   keysr;   r   r   rC   r   r	   r   r   loggerwarning_oncer   r   center_croprescale	normalizeappendr   r   )r<   r4   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r5   r6   r7   r=   rA   
all_imagesrK   s                        r?   
preprocessz TextNetImageProcessor.preprocess   s   R "+!6IDNN	'tTYYTfN'3'?|TEVEV'38+9+E4K^K^!*!6IDNN	!)W[\	#-#9Zt
+9+E4K^K^'3'?|TEVEV#-#9Zt
!*!6IDNN	+9+E4K^K^DLfLfg$V,F#:  	&!)%!)	
 9?@nU+@F@ 6<<E.'<<6!9%*s
 $ >vay I
 	%E%dXars((u9Xi(j5ZkljiSd '  e$	%$ $
 ({N_`
 

 '>BBM A =:
s   >H?II	)__name__
__module____qualname____doc__model_input_namesr   BILINEARr   r   boolr   dictstrintr   floatlistr:   npndarrayr   r   FIRSTr   r   PILImagerU   __classcell__)r>   s   @r?   r   r   3   s   &P (( )-'9'B'B$.2,3!:O9M#4
4
 tCH~&4
 	4

 %4
 4
 DcN+4
 4
 c5j)4
 4
 U5$u+#5674
 E%e"4564
 4
 
4
t (:'B'B>BDH5
zz5
 38n5
 %	5

 eC)9$9:;5
 $E#/?*?$@A5
 
5
t %))-&*'+)-#'%)*.'+:>9=)-;?2B2H2HDH#UCUC D>UC tCH~&	UC
 smUC %UC !UC C=UC TNUC !UC tnUC U5$u+#567UC E%e"456UC !UC !sJ!78UC  ./!UC" $E#/?*?$@A#UC& 
'UCr@   r   )&rY   typingr   r   numpyrb   image_processing_utilsr   r   r   image_transformsr	   r
   r   r   image_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   
get_loggerrV   rN   re   r   __all__r8   r@   r?   <module>rp      su    ) "  U U     > = 
		H	%mC. mC`	 #
#r@   