
    rhի                     L   d Z ddlZddlmZ ddlmZ ddlmZm	Z	m
Z
 ddlZddlZddlZddlmZ ddlmZmZmZ dd	lmZ dd
lmZ ddlmZmZ ddlmZmZ ddlmZm Z  ddl!m"Z"m#Z#m$Z$ ddl%m&Z&m'Z' ddl(m)Z)  e$jT                  e+      Z,e e#d       G d de"                    Z-e e#d       G d de"                    Z.d Z/ G d dej`                        Z1 G d dej`                        Z2	 dAdej`                  dejf                  d ejf                  d!ejf                  d"e	ejf                     d#e4d$e4fd%Z5 G d& d'ej`                        Z6 G d( d)ej`                        Z7 G d* d+ej`                        Z8 G d, d-ej`                        Z9 G d. d/ej`                        Z: G d0 d1e      Z; G d2 d3ej`                        Z<e# G d4 d5e             Z=e# G d6 d7e=             Z> G d8 d9ej`                        Z? e#d:       G d; d<e=             Z@ e#d=       G d> d?e=             ZAg d@ZBy)Bz,PyTorch VideoMAE (masked autoencoder) model.    N)deepcopy)	dataclass)CallableOptionalUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)GradientCheckpointingLayer)BaseModelOutputImageClassifierOutput)ALL_ATTENTION_FUNCTIONSPreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)ModelOutputauto_docstringlogging)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STD   )VideoMAEConfigz[
    Class for VideoMAEDecoder's outputs, with potential hidden states and attentions.
    )custom_introc                       e Zd ZU dZdZeej                     ed<   dZ	ee
ej                        ed<   dZee
ej                        ed<   y)VideoMAEDecoderOutputz
    logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
        Pixel reconstruction logits.
    Nlogitshidden_states
attentions)__name__
__module____qualname____doc__r   r   torchFloatTensor__annotations__r    tupler!        /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/videomae/modeling_videomae.pyr   r   -   sR    
 +/FHU&&'.8<M8E%"3"345<59Ju00129r+   r   zb
    Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions.
    c                       e Zd ZU dZdZeej                     ed<   dZ	eej                     ed<   dZ
eeej                        ed<   dZeeej                        ed<   y)VideoMAEForPreTrainingOutputz
    loss (`torch.FloatTensor` of shape `(1,)`):
        Pixel reconstruction loss.
    logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
        Pixel reconstruction logits.
    Nlossr   r    r!   )r"   r#   r$   r%   r/   r   r&   r'   r(   r   r    r)   r!   r*   r+   r,   r.   r.   >   sg     )-D(5$$
%,*.FHU&&'.8<M8E%"3"345<59Ju00129r+   r.   c                 h   fd}t        j                  t        |       D cg c]
  } ||       c}      }t        j                  |dddddf         |dddddf<   t        j                  |dddddf         |dddddf<   t        j                  |      j                  d      S c c}w )z Sinusoid position encoding tablec           
          t              D cg c]$  }| t        j                  dd|dz  z  z        z  & c}S c c}w )Ni'     )rangenppower)positionhid_jd_hids     r,   get_position_angle_vecz;get_sinusoid_encoding_table.<locals>.get_position_angle_vecX   s;    RWX]R^_288E1
+;e+CDD___s   );Nr   r2   r   )r4   arrayr3   sincosr&   r'   	unsqueeze)
n_positionr8   r9   pos_isinusoid_tables    `   r,   get_sinusoid_encoding_tablerA   T   s    ` XX%PZJ[\5e<\]N ff^Aqt!tG%<=N1add7 ff^Aqt!tG%<=N1add7^,66q99	 ]s   B/c                   (     e Zd ZdZ fdZd Z xZS )VideoMAEEmbeddingsz7
    Construct the patch and position embeddings.

    c                     t         |           t        |      | _        | j                  j                  | _        t        | j                  |j                        | _        || _        y N)	super__init__VideoMAEPatchEmbeddingspatch_embeddingsnum_patchesrA   hidden_sizeposition_embeddingsconfigselfrM   	__class__s     r,   rG   zVideoMAEEmbeddings.__init__h   sR     7 ?00<<#>t?O?OQWQcQc#d r+   c                    | j                  |      }|| j                  j                         j                  |      j	                  |j
                  d      z   }|)|j                  \  }}}||    }|j                  |d|      }|S )NTdevicecopy)rI   rL   detachtype_astorS   shapereshape)rO   pixel_valuesbool_masked_pos
embeddings
batch_size_num_channelss          r,   forwardzVideoMAEEmbeddings.forwardq   s    **<8
  $":":"A"A"C"K"KJ"W"Z"Z$$4 #[ #
 


 &*4*:*:'J<#_$45J#++JLIJr+   r"   r#   r$   r%   rG   ra   __classcell__rP   s   @r,   rC   rC   b   s    
r+   rC   c                   (     e Zd ZdZ fdZd Z xZS )rH   aw  
    Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels,
    height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.

    The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width //
    patch_size).

    c           	         t         	|           |j                  }|j                  }|j                  }|j
                  }|j                  }|j                  }t        |t        j                  j                        r|n||f}t        |t        j                  j                        r|n||f}|| _        || _        t        |      | _        |d   |d   z  |d   |d   z  z  || j                  z  z  }|| _        || _        t        j                  ||| j                  |d   |d   f| j                  |d   |d   f      | _        y )Nr   r   )in_channelsout_channelskernel_sizestride)rF   rG   
image_size
patch_sizer`   rK   
num_framestubelet_size
isinstancecollectionsabcIterableintrJ   r   Conv3d
projection)
rO   rM   rk   rl   r`   rK   rm   rn   rJ   rP   s
            r,   rG   z VideoMAEPatchEmbeddings.__init__   s>   &&
&&
**((&&
**#-j+//:R:R#SZZdfpYq
#-j+//:R:R#SZZdfpYq
$$-]jm+
1A0NOS]aeararSrs 	 )&))$$**JqM:a=I%%z!}jmD	
r+   c                    |j                   \  }}}}}|| j                  k7  rt        d      || j                  d   k7  s|| j                  d   k7  r2t        d| d| d| j                  d    d| j                  d    d	      |j	                  dddd	d
      }| j                  |      j                  d      j                  dd      }|S )NzeMake sure that the channel dimension of the pixel values match with the one set in the configuration.r   r   zInput image size (*z) doesn't match model (z).r2   r      )rY   r`   
ValueErrorrk   permuteru   flatten	transpose)rO   r[   r^   rm   r`   heightwidthr]   s           r,   ra   zVideoMAEPatchEmbeddings.forward   s    >J>P>P;
Jfe4,,,w  T__Q''5DOOA4F+F$VHAeW4KDOO\]L^K__`aeapapqras`ttvw  $++Aq!Q:__\2::1=GG1M
r+   rb   rd   s   @r,   rH   rH      s    
6r+   rH   modulequerykeyvalueattention_maskscalingdropoutc                    t        j                  ||j                  dd            |z  }t        j                  j                  |dt         j                        j                  |j                        }t        j                  j                  ||| j                        }|||z  }t        j                  ||      }	|	j                  dd      j                         }	|	|fS )NrU   )dimdtype)ptrainingr   r2   )r&   matmulr|   r   
functionalsoftmaxfloat32rX   r   r   r   
contiguous)
r   r   r   r   r   r   r   kwargsattn_weightsattn_outputs
             r,   eager_attention_forwardr      s     <<s}}R'<=GL ==((2U]](SVVW\WbWbcL ==((6??([L !#n4,,|U3K''1-88:K$$r+   c            
            e Zd Zdeddf fdZ	 ddeej                     dede	e
ej                  ej                  f   e
ej                     f   fdZ xZS )	VideoMAESelfAttentionrM   returnNc                    t         |           |j                  |j                  z  dk7  r2t	        |d      s&t        d|j                   d|j                   d      || _        |j                  | _        t        |j                  |j                  z        | _        | j                  | j                  z  | _	        |j                  | _        | j                  dz  | _        d| _        t        j                  |j                  | j                  d      | _        t        j                  |j                  | j                  d      | _        t        j                  |j                  | j                  d      | _        |j&                  rot        j(                  t+        j,                  | j                              | _        t        j(                  t+        j,                  | j                              | _        y d | _        d | _        y )	Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .g      Fbias)rF   rG   rK   num_attention_headshasattrry   rM   rs   attention_head_sizeall_head_sizeattention_probs_dropout_probdropout_probr   	is_causalr   Linearr   r   r   qkv_bias	Parameterr&   zerosq_biasv_biasrN   s     r,   rG   zVideoMAESelfAttention.__init__   s    : ::a?PVXhHi"6#5#5"6 7334A7  #)#=#= #&v'9'9F<V<V'V#W !558P8PP"??//5YYv1143E3EER
99V//1C1C%PYYv1143E3EER
??,,u{{43E3E'FGDK,,u{{43E3E'FGDKDKDKr+   	head_maskoutput_attentionsc           
         |j                   \  }}}| j                  !t        j                  | j                  d      nd }t
        j                  j                  || j                  j                  |      }t
        j                  j                  || j                  j                  | j                        }	t
        j                  j                  || j                  j                  | j                        }
|j                  |d| j                  | j                        j                  dd      }|	j                  |d| j                  | j                        j                  dd      }|
j                  |d| j                  | j                        j                  dd      }t         }| j"                  j$                  dk7  rN| j"                  j$                  dk(  r|rt&        j)                  d	       nt*        | j"                  j$                     } || ||||| j,                  | j.                  | j0                  sd
n| j2                        \  }}|j5                         d d | j6                  fz   }|j9                  |      }|r||f}|S |f}|S )NF)requires_grad)inputweightr   rU   r   r2   eagersdpaz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )r   r   r   r   )rY   r   r&   
zeros_liker   r   r   linearr   r   r   r   viewr   r   r|   r   rM   _attn_implementationloggerwarning_oncer   r   r   r   r   sizer   rZ   )rO   r    r   r   r^   
seq_lengthr_   k_biaskeysvaluesqueries	key_layervalue_layerquery_layerattention_interfacecontext_layerattention_probsnew_context_layer_shapeoutputss                      r,   ra   zVideoMAESelfAttention.forward   s/    %2$7$7!
JGK{{G^!!$++UCdh}}##-V\#]%%M$**BSBSZ^ZeZe%f--&&]4::CTCT[_[f[f&gIIj"d.F.FH`H`akklmopq	kk*b$2J2JDLdLdeoopqstull:r43K3KTMeMefppqrtuv(?;;++w6{{//69>O##L
 '>dkk>^>^&_#)<nnLL#}}C$2C2C	*
& #0"4"4"6s";t?Q?Q>S"S%--.EF6G=/2 O\M]r+   NF)r"   r#   r$   r   rG   r   r&   Tensorboolr   r)   ra   rc   rd   s   @r,   r   r      sh    ~ $ 6 bg'(0(>'Z^'	uU\\5<</0%2EE	F'r+   r   c                   |     e Zd ZdZdeddf fdZdej                  dej                  dej                  fdZ xZ	S )	VideoMAESelfOutputz
    The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    rM   r   Nc                     t         |           t        j                  |j                  |j                        | _        t        j                  |j                        | _        y rE   )	rF   rG   r   r   rK   denseDropouthidden_dropout_probr   rN   s     r,   rG   zVideoMAESelfOutput.__init__#  sB    YYv1163E3EF
zz&"<"<=r+   r    input_tensorc                 J    | j                  |      }| j                  |      }|S rE   r   r   rO   r    r   s      r,   ra   zVideoMAESelfOutput.forward(  s$    

=1]3r+   )
r"   r#   r$   r%   r   rG   r&   r   ra   rc   rd   s   @r,   r   r     sD    
>~ >$ >
U\\  RWR^R^ r+   r   c                        e Zd Zdeddf fdZdee   ddfdZ	 	 ddej                  de
ej                     d	edeeej                  ej                  f   eej                     f   fd
Z xZS )VideoMAEAttentionrM   r   Nc                     t         |           t        |      | _        t	        |      | _        t               | _        y rE   )rF   rG   r   	attentionr   outputsetpruned_headsrN   s     r,   rG   zVideoMAEAttention.__init__1  s0    .v6(0Er+   headsc                 >   t        |      dk(  ry t        || j                  j                  | j                  j                  | j
                        \  }}t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _	        t        | j                  j                  |d      | j                  _        | j                  j                  t        |      z
  | j                  _        | j                  j                  | j                  j                  z  | j                  _        | j
                  j                  |      | _        y )Nr   r   r   )lenr   r   r   r   r   r   r   r   r   r   r   r   union)rO   r   indexs      r,   prune_headszVideoMAEAttention.prune_heads7  s   u:?74>>55t~~7Y7Y[_[l[l
u
  2$..2F2FN/0B0BEJ1$..2F2FN.t{{/@/@%QO .2^^-O-ORUV[R\-\*'+~~'I'IDNNLnLn'n$ --33E:r+   r    r   r   c                 h    | j                  |||      }| j                  |d   |      }|f|dd  z   }|S )Nr   r   )r   r   )rO   r    r   r   self_outputsattention_outputr   s          r,   ra   zVideoMAEAttention.forwardI  sE     ~~mY@QR;;|AF#%QR(88r+   r   )r"   r#   r$   r   rG   r   rs   r   r&   r   r   r   r   r)   ra   rc   rd   s   @r,   r   r   0  s    "~ "$ ";S ;d ;* -1"'	|| ELL)  	
 
uU\\5<</0%2EE	Fr+   r   c                   `     e Zd Zdeddf fdZdej                  dej                  fdZ xZS )VideoMAEIntermediaterM   r   Nc                    t         |           t        j                  |j                  |j
                        | _        t        |j                  t              rt        |j                     | _        y |j                  | _        y rE   )rF   rG   r   r   rK   intermediate_sizer   ro   
hidden_actstrr   intermediate_act_fnrN   s     r,   rG   zVideoMAEIntermediate.__init__Y  s]    YYv1163K3KL
f''-'-f.?.?'@D$'-'8'8D$r+   r    c                 J    | j                  |      }| j                  |      }|S rE   )r   r   )rO   r    s     r,   ra   zVideoMAEIntermediate.forwarda  s&    

=100?r+   	r"   r#   r$   r   rG   r&   r   ra   rc   rd   s   @r,   r   r   X  s1    9~ 9$ 9U\\ ell r+   r   c                   x     e Zd Zdeddf fdZdej                  dej                  dej                  fdZ xZS )VideoMAEOutputrM   r   Nc                     t         |           t        j                  |j                  |j
                        | _        t        j                  |j                        | _	        y rE   )
rF   rG   r   r   r   rK   r   r   r   r   rN   s     r,   rG   zVideoMAEOutput.__init__j  sB    YYv779K9KL
zz&"<"<=r+   r    r   c                 T    | j                  |      }| j                  |      }||z   }|S rE   r   r   s      r,   ra   zVideoMAEOutput.forwardo  s.    

=1]3%4r+   r   rd   s   @r,   r   r   i  s?    >~ >$ >
U\\  RWR^R^ r+   r   c                        e Zd ZdZdeddf fdZ	 	 d
dej                  deej                     de	de
eej                  ej                  f   eej                     f   fd	Z xZS )VideoMAELayerz?This corresponds to the Block class in the timm implementation.rM   r   Nc                 r   t         |           |j                  | _        d| _        t	        |      | _        t        |      | _        t        |      | _	        t        j                  |j                  |j                        | _        t        j                  |j                  |j                        | _        y )Nr   eps)rF   rG   chunk_size_feed_forwardseq_len_dimr   r   r   intermediater   r   r   	LayerNormrK   layer_norm_epslayernorm_beforelayernorm_afterrN   s     r,   rG   zVideoMAELayer.__init__|  s    '-'E'E$*6208$V, "V-?-?VEZEZ [!||F,>,>FDYDYZr+   r    r   r   c                     | j                  | j                  |      ||      }|d   }|dd  }||z   }| j                  |      }| j                  |      }| j	                  ||      }|f|z   }|S )N)r   r   r   )r   r   r   r   r   )rO   r    r   r   self_attention_outputsr   r   layer_outputs           r,   ra   zVideoMAELayer.forward  s     "&!!-0/ "0 "

 2!4(, )=8 ++M:((6 {{<?/G+r+   r   )r"   r#   r$   r%   r   rG   r&   r   r   r   r   r)   ra   rc   rd   s   @r,   r   r   y  s    I[~ [$ [ -1"'	|| ELL)  	
 
uU\\5<</0%2EE	Fr+   r   c                        e Zd Zdeddf fdZ	 	 	 	 ddej                  deej                     deded	ede	e
ef   fd
Z xZS )VideoMAEEncoderrM   r   Nc                     t         |           || _        t        j                  t        |j                        D cg c]  }t        |       c}      | _        d| _	        y c c}w r   )
rF   rG   rM   r   
ModuleListr3   num_hidden_layersr   layergradient_checkpointing)rO   rM   r_   rP   s      r,   rG   zVideoMAEEncoder.__init__  sN    ]]5IaIaCb#caM&$9#cd
&+# $ds   A#r    r   r   output_hidden_statesreturn_dictc                    |rdnd }|rdnd }t        | j                        D ]1  \  }}	|r||fz   }|||   nd }
 |	||
|      }|d   }|s)||d   fz   }3 |r||fz   }|st        d |||fD              S t        |||      S )Nr*   r   r   c              3   &   K   | ]	  }||  y wrE   r*   .0vs     r,   	<genexpr>z*VideoMAEEncoder.forward.<locals>.<genexpr>  s     mq_`_lm   last_hidden_stater    r!   )	enumerater  r)   r   )rO   r    r   r   r  r	  all_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputss               r,   ra   zVideoMAEEncoder.forward  s     #7BD$5b4(4 	POA|#$58H$H!.7.CilO(IZ[M)!,M &9]1=M<O&O#	P   1]4D Dm]4EGZ$[mmm++*
 	
r+   )NFFT)r"   r#   r$   r   rG   r&   r   r   r   r   r)   r   ra   rc   rd   s   @r,   r  r    sz    ,~ ,$ , -1"'%* !
||!
 ELL)!
  	!

 #!
 !
 
uo%	&!
r+   r  c                   :    e Zd ZU eed<   dZdZdZdZdZ	dZ
dZd Zy)VideoMAEPreTrainedModelrM   videomaer[   Tc                    t        |t        j                  t        j                  f      rm|j                  j
                  j                  d| j                  j                         |j                  %|j                  j
                  j                          yyt        |t        j                        rJ|j                  j
                  j                          |j                  j
                  j                  d       yy)zInitialize the weightsr   )meanstdNg      ?)ro   r   r   rt   r   datanormal_rM   initializer_ranger   zero_r   fill_)rO   r   s     r,   _init_weightsz%VideoMAEPreTrainedModel._init_weights  s    fryy"))45 MM&&CT[[5R5R&S{{&  &&( '-KK""$MM$$S) .r+   N)r"   r#   r$   r   r(   base_model_prefixmain_input_namesupports_gradient_checkpointing_supports_sdpa_supports_flash_attn_supports_flex_attn_supports_attention_backendr%  r*   r+   r,   r  r    s5    "$O&*#N"&
*r+   r  c                        e Zd Z fdZd Zd Ze	 	 	 	 	 ddej                  de	ej                     de	ej                     de	e   de	e   d	e	e   d
eeef   fd       Z xZS )VideoMAEModelc                    t         |   |       || _        t        |      | _        t        |      | _        |j                  rd | _        n0t        j                  |j                  |j                        | _        | j                          y )Nr   )rF   rG   rM   rC   r]   r  encoderuse_mean_pooling	layernormr   r   rK   r   	post_initrN   s     r,   rG   zVideoMAEModel.__init__  si     ,V4&v.""!DN\\&*<*<&BWBWXDN 	r+   c                 .    | j                   j                  S rE   )r]   rI   )rO   s    r,   get_input_embeddingsz"VideoMAEModel.get_input_embeddings  s    ///r+   c                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 y)z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        N)itemsr0  r  r   r   )rO   heads_to_pruner  r   s       r,   _prune_headszVideoMAEModel._prune_heads  sE    
 +002 	CLE5LLu%//;;EB	Cr+   r[   r\   r   r   r  r	  r   c                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }| j	                  || j                   j
                        }| j                  ||      }| j                  |||||      }|d   }	| j                  | j                  |	      }	|s	|	f|dd z   S t        |	|j                  |j                        S )a  
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
            batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence
            length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`.

        Examples:

        ```python
        >>> import av
        >>> import numpy as np

        >>> from transformers import AutoImageProcessor, VideoMAEModel
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`list[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`list[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 16 frames
        >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container, indices)

        >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
        >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")

        >>> # prepare video for the model
        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> # forward pass
        >>> outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 1568, 768]
        ```Nr   r   r  r	  r   r   r  )rM   r   r  use_return_dictget_head_maskr  r]   r0  r2  r   r    r!   )
rO   r[   r\   r   r   r  r	  embedding_outputencoder_outputssequence_outputs
             r,   ra   zVideoMAEModel.forward  s   r 2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B] &&y$++2O2OP	??<I,,/!5# ' 
 *!,>>%"nn_=O#%(;;;-)77&11
 	
r+   )NNNNN)r"   r#   r$   rG   r5  r9  r   r&   r'   r   
BoolTensorr   r   r   r)   r   ra   rc   rd   s   @r,   r.  r.    s    0C  7;,0,0/3&*y
''y
 "%"2"23y
 ELL)	y

 $D>y
 'tny
 d^y
 
uo%	&y
 y
r+   r.  c                   ,     e Zd Z fdZ	 	 	 ddZ xZS )VideoMAEDecoderc                    t         |           |j                  |j                  z  |j                  dz  z  }t        |      }|j                  |_        |j                  |_	        |j                  |_        |j                  |_        t        j                  t!        |j                        D cg c]  }t#        |       c}      | _        t        j&                  |j                        | _        |dkD  r t        j*                  |j                  |      nt        j,                         | _        d| _        || _        y c c}w )Nr2   r   F)rF   rG   r`   rn   rl   r   decoder_hidden_sizerK   decoder_num_hidden_layersr  decoder_num_attention_headsr   decoder_intermediate_sizer   r   r  r3   r   decoder_layersr   normr   Identityheadr  rM   )rO   rM   rJ   decoder_num_labelsdecoder_configr_   rP   s         r,   rG   zVideoMAEDecoder.__init__  s   #0063F3FFIZIZ\]I]]!&)%+%?%?"+1+K+K(-3-O-O*+1+K+K( mm49&:Z:Z4[\q]>*\
 LL!;!;<	I[^_I_BIIf002DEegepeper 		 ',# ]s   .D=c                 \   |rdnd }|rdnd }t        | j                        D ])  \  }}	|r||fz   } |	|d |      }
|
d   }|s!||
d   fz   }+ |r||fz   }|dkD  r|d d | d f   }| j                  |      }| j                  |      }|st	        d |||fD              S t        |||      S )Nr*   )r   r   r   r   c              3   &   K   | ]	  }||  y wrE   r*   r  s     r,   r  z*VideoMAEDecoder.forward.<locals>.<genexpr>  s     fqXYXefr  )r   r    r!   )r  rI  rJ  rL  r)   r   )rO   r    return_token_numr   r  r	  r  r  r  r  r  r   s               r,   ra   zVideoMAEDecoder.forward  s     #7BD$5b4()<)<= 		POA|#$58H$H!($ZklM)!,M &9]1=M<O&O#		P   1]4D Da)!.>->-?*?@M 		-0=)fV->@S$Tfff$FBS`sttr+   )FFT)r"   r#   r$   rG   ra   rc   rd   s   @r,   rC  rC    s    4  ""ur+   rC  zb
    The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.
    c                        e Zd Z fdZe	 	 	 	 d
dej                  dej                  deej                     dee
   dee
   dee
   deeef   fd	       Z xZS )VideoMAEForPreTrainingc                    t         |   |       || _        t        |      | _        t        j                  |j                  |j                  d      | _	        t        j                  t        j                  dd|j                              | _        t        | j                  j                  j                   |j                        | _        t%        || j                  j                  j                         | _        | j)                          y )NFr   r   )rJ   )rF   rG   rM   r.  r  r   r   rK   rE  encoder_to_decoderr   r&   r   
mask_tokenrA   r]   rJ   rL   rC  decoderr3  rN   s     r,   rG   zVideoMAEForPreTraining.__init__  s     %f-"$))F,>,>@Z@Zaf"g,,u{{1a9S9S'TU#>MM$$00&2L2L$
  'v4==;S;S;_;_` 	r+   r[   r\   r   r   r  r	  r   c                 ~   ||n| j                   j                  }| j                  ||||||      }|d   }| j                  |      }|j                  \  }	}
}|t        d      | j                  j                  |	dd      j                  |      }|j                         j                  |j                  d      }||    j                  |	d|      }||   j                  |	d|      }t        j                  ||z   | j                  |z   gd	      }| j!                  ||j                  d         }|j"                  }d}t        j$                         5  | j                   j&                  d
k7  r|}n|j                  }|j(                  }t        j*                  t,              j                  ||      ddddddf   }t        j*                  t.              j                  ||      ddddddf   }||z  |z   }|j                  \  }	}}}}| j                   j0                  | j                   j2                  }}| j                   j4                  r|j7                  |	||z  ||||z  |||z  |      }|j9                  dddddddd
      j;                         }|j7                  |	||z  |z  |z  |z  |z  ||z  |z  |      }||j=                  dd      z
  |j?                  ddd      jA                         dz   z  }|j7                  |	||z  |z  |z  |z  |z  ||z  |z  |z        }n| j                   j&                  d
k7  rt        d      |j7                  |	||z  ||||z  |||z  |      }|j9                  dddddddd
      j;                         }|j7                  |	||z  |z  |z  |z  |z  ||z  |z  |z        }|j                  \  }	}}||   j                  |	d|      } ddd       tC               }! |!|       }|s|f|dd z   }"||f|"z   S |"S tE        |||jF                  |jH                        S # 1 sw Y   TxY w)a  
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
            batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) *
            (image_size // patch_size) ** 2`.

        Examples:
        ```python
        >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining
        >>> import numpy as np
        >>> import torch

        >>> num_frames = 16
        >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224)))

        >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
        >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base")

        >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values

        >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
        >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
        >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool()

        >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
        >>> loss = outputs.loss
        ```N)r\   r   r   r  r	  r   z!One must provided a boolean mask rU   TrR   r   r   r   )rS   r   rx      r2         r   )r   keepdim)r   unbiasedr\  gư>zQCan't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False.r/   r   r    r!   )%rM   r<  r  rU  rY   ry   rL   expandrW   rV   rX   rS   rZ   r&   catrV  rW  r   no_gradr`   r   	as_tensorr   r   rn   rl   norm_pix_lossr   rz   r   r  varsqrtr   r.   r    r!   )#rO   r[   r\   r   r   r  r	  r   r@  r^   seq_lenr`   expanded_position_embeddingspos_emb_visiblepos_emb_maskx_fulldecoder_outputsr   r/   framesrS   r   r  r  timer}   r~   rn   rl   frames_normvideos_patchr_   labelsloss_fctr   s#                                      r,   ra   zVideoMAEForPreTraining.forward  s   J &1%<k$++B]B]--+/!5#   
 "!*11
 -<,A,A)
G\ "@AA'+'?'?'F'FzSUWY'Z'b'bco'p$'C'J'J'L'O'OWcWjWjqu'O'v$67GHPPQ[]_amn3ODLLZY[]ij Oo=tQ]?]^def ,,v|/A/A!/DE '']]_ H	Y{{''1,% &,,$**'<=@@V[@\]acgijlprv]vwoo&:;>>fTY>Z[_aeghjnpt[tu%+d2<BLL9JlFE'+{{'?'?AWAW*L{{((L(  j(Z'	  1aAq!Q?JJLL(61Z?%G:U :-
: 	  &D(IIJJ2dJCHHJTQ  +//L(61Z?%G:U :-
:\I  ;;++q0$k   L(  j(Z'	  1aAq!Q?JJL%{{L(61Z?%G:U :-
:\I  +7*<*<'J<!/2:::r<XFQH	YT 9'Y,F)-)9TGf$EvE+!//))	
 	
cH	Y H	Ys   JP33P<)NNNN)r"   r#   r$   rG   r   r&   r'   rA  r   r   r   r   r)   r.   ra   rc   rd   s   @r,   rS  rS    s    " 
 -1,0/3&*[
''[
 ))[
 ELL)	[

 $D>[
 'tn[
 d^[
 
u22	3[
 [
r+   rS  z
    VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden
    states of all tokens) e.g. for ImageNet.
    c                        e Zd Z fdZe	 	 	 	 	 	 d
deej                     deej                     deej                     dee   dee   dee   de	e
ef   fd	       Z xZS )VideoMAEForVideoClassificationc                    t         |   |       |j                  | _        t        |      | _        |j
                  rt        j                  |j                        nd | _	        |j                  dkD  r*t        j                  |j                  |j                        nt        j                         | _        | j                          y )Nr   )rF   rG   
num_labelsr.  r  r1  r   r   rK   fc_normr   rK  
classifierr3  rN   s     r,   rG   z'VideoMAEForVideoClassification.__init__y  s      ++%f- <B;R;Rr||F$6$67X\NTN_N_bcNc"))F$6$68I8IJikititiv 	r+   r[   r   rp  r   r  r	  r   c                    ||n| j                   j                  }| j                  |||||      }|d   }| j                  !| j                  |j	                  d            }n	|dddf   }| j                  |      }	d}
|| j                   j                  | j                  dk(  rd| j                   _        nl| j                  dkD  rL|j                  t        j                  k(  s|j                  t        j                  k(  rd| j                   _        nd| j                   _        | j                   j                  dk(  rIt               }| j                  dk(  r& ||	j                         |j                               }
n ||	|      }
n| j                   j                  dk(  r=t               } ||	j                  d| j                        |j                  d            }
n,| j                   j                  dk(  rt!               } ||	|      }
|s|	f|dd z   }|
|
f|z   S |S t#        |
|	|j$                  |j&                  	      S )
a!  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Examples:

        ```python
        >>> import av
        >>> import torch
        >>> import numpy as np

        >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`list[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`list[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 16 frames
        >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container, indices)

        >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
        >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")

        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        ...     logits = outputs.logits

        >>> # model predicts one of the 400 Kinetics-400 classes
        >>> predicted_label = logits.argmax(-1).item()
        >>> print(model.config.id2label[predicted_label])
        eating spaghetti
        ```Nr;  r   r   
regressionsingle_label_classificationmulti_label_classificationrU   r^  )rM   r<  r  rv  r  rw  problem_typeru  r   r&   longrs   r   squeezer
   r   r	   r   r    r!   )rO   r[   r   rp  r   r  r	  r   r@  r   r/   rq  r   s                r,   ra   z&VideoMAEForVideoClassification.forward  s    x &1%<k$++B]B]--/!5#   
 "!*<<#"ll?+?+?+BCO-ad3O1{{''/??a'/;DKK,__q(fllejj.HFLL\a\e\eLe/LDKK,/KDKK,{{''<7"9??a'#FNN$4fnn6FGD#FF3D))-JJ+-B @&++b/R))-II,./Y,F)-)9TGf$EvE$!//))	
 	
r+   )NNNNNN)r"   r#   r$   rG   r   r   r&   r   r   r   r)   r   ra   rc   rd   s   @r,   rs  rs  r  s      04,0)-,0/3&*N
u||,N
 ELL)N
 &	N

 $D>N
 'tnN
 d^N
 
u++	,N
 N
r+   rs  )rS  r.  r  rs  )r   )Cr%   collections.abcrp   rT   r   dataclassesr   typingr   r   r   numpyr4   r&   torch.utils.checkpointr   torch.nnr	   r
   r   activationsr   modeling_layersr   modeling_outputsr   r   modeling_utilsr   r   pytorch_utilsr   r   utilsr   r   r   utils.constantsr   r   configuration_videomaer   
get_loggerr"   r   r   r.   rA   ModulerC   rH   r   floatr   r   r   r   r   r   r   r  r  r.  rC  rS  rs  __all__r*   r+   r,   <module>r     sd   3   ! , ,     A A ! 9 F F Q 
 K 2 
		H	% 
:K : : 
:; : : : B2bii 2z %II%<<% 
% <<	%
 U\\*% % %<BBII BL &$		 $P299 "RYY  '. 'V(
bii (
V *o * *. U
+ U
 U
p9ubii 9ux 
n
4 n

n
b ]
%< ]
]
@ sr+   