
    rh|                     p   d Z ddlmZmZmZ ddlZddlZddlmZ ddlm	Z	m
Z
 ddlmZ ddlmZ dd	lmZmZmZ dd
lmZmZ ddlmZmZ ddlmZmZmZ ddlmZ  ej>                  e       Z! G d dejD                        Z# G d dejD                        Z$	 d4dejD                  dejJ                  dejJ                  dejJ                  deejJ                     de&de&fdZ' G d dejD                        Z( G d dejD                        Z) G d d ejD                        Z* G d! d"ejD                        Z+ G d# d$ejD                        Z, G d% d&e      Z- G d' d(ejD                        Z. G d) d*ejD                        Z/e G d+ d,e             Z0e G d- d.e0             Z1 ed/0       G d1 d2e0             Z2g d3Z3y)5zPyTorch ViViT model.    )CallableOptionalUnionN)nn)CrossEntropyLossMSELoss   )ACT2FN)GradientCheckpointingLayer)BaseModelOutputBaseModelOutputWithPoolingImageClassifierOutput)ALL_ATTENTION_FUNCTIONSPreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)auto_docstringlogging	torch_int   )VivitConfigc                   0     e Zd ZdZ fdZddefdZ xZS )VivitTubeletEmbeddingsa  
    Construct Vivit Tubelet embeddings.

    This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of
    shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.

    The seq_len (the number of patches) equals (number of frames // tubelet_size[0]) * (height // tubelet_size[1]) *
    (width // tubelet_size[2]).
    c                    t         |           |j                  | _        |j                  | _        |j                  | _        | j                  | j
                  d   z  | j                  | j
                  d   z  z  | j                  | j
                  d   z  z  | _        |j                  | _        t        j                  |j                  |j                  |j                  |j                        | _        y )N   r   r   )kernel_sizestride)super__init__
num_frames
image_sizetubelet_size
patch_sizenum_patcheshidden_size	embed_dimr   Conv3dnum_channels
projectionselfconfig	__class__s     {/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/vivit/modeling_vivit.pyr   zVivitTubeletEmbeddings.__init__/   s     ++ ++ --__ 22$//!"446$//!"446 	
  ++))!3!3ATAT]c]p]p
    interpolate_pos_encodingc                 \   |j                   \  }}}}}|sP|| j                  k7  s|| j                  k7  r2t        d| d| d| j                  d    d| j                  d    d	      |j                  ddddd	      }| j	                  |      }|j                  d      j                  dd      }|S )
NzImage image size (*z) doesn't match model (r   r   z).r   r	      )shaper!   
ValueErrorpermuter)   flatten	transpose)	r+   pixel_valuesr0   
batch_sizer    r(   heightwidthxs	            r.   forwardzVivitTubeletEmbeddings.forward?   s    >J>P>P;
Jfe'Vt-F%SWSbSbJb$VHAeW4KDOO\]L^K__`aeapapqras`ttvw 
 $++Aq!Q:OOL) IIaL""1a(r/   F)__name__
__module____qualname____doc__r   boolr>   __classcell__r-   s   @r.   r   r   $   s    
 d r/   r   c                   p     e Zd ZdZ fdZdej                  dededej                  fdZd
de	fd	Z
 xZS )VivitEmbeddingsz
    Vivit Embeddings.

    Creates embeddings from a video using VivitTubeletEmbeddings, adds CLS token and positional embeddings.
    c                    t         |           t        j                  t	        j
                  dd|j                              | _        t        |      | _	        t        j                  t	        j
                  d| j                  j                  dz   |j                              | _        t        j                  |j                        | _        |j                  dd  | _        || _        y )Nr   )r   r   r   	Parametertorchzerosr%   	cls_tokenr   patch_embeddingsr$   position_embeddingsDropouthidden_dropout_probdropoutr"   r#   r,   r*   s     r.   r   zVivitEmbeddings.__init__W   s    ekk!Q8J8J&KL 6v >#%<<KK400<<q@&BTBTU$
  zz&"<"<= --ab1r/   
embeddingsr;   r<   returnc                    |j                   d   dz
  }| j                  j                   d   dz
  }t        j                  j	                         s||k(  r||k(  r| j                  S | j                  ddddf   }| j                  ddddf   }|j                   d   }|| j
                  d   z  }	|| j
                  d   z  }
t        |dz        }|j                  d|||      }|j                  dddd      }t        j                  j                  ||	|
fdd	
      }|j                  dddd      j                  dd|      }t        j                  ||fd      S )a   
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        r   Nr   g      ?r	   r   bicubicF)sizemodealign_cornersdim)r4   rO   rK   jit
is_tracingr#   r   reshaper6   r   
functionalinterpolateviewcat)r+   rS   r;   r<   r$   num_positionsclass_pos_embedpatch_pos_embedr\   
new_height	new_widthsqrt_num_positionss               r.   r0   z(VivitEmbeddings.interpolate_pos_encodinge   sj    !&&q)A-0066q9A= yy##%+*F6UZ?+++221bqb59221ab59r"tq11
T__Q//	&}c'9:)11!5GI[]`a)11!Q1=--33i(	 4 
 *11!Q1=BB1b#Nyy/?;CCr/   r0   c                 0   |j                   \  }}}}}| j                  ||      }| j                  j                  |ddg      }	t	        j
                  |	|fd      }|r|| j                  |||      z   }n|| j                  z   }| j                  |      }|S )Nr0   r   r[   )	r4   rN   rM   tilerK   rc   r0   rO   rR   )
r+   r9   r0   r:   r    r(   r;   r<   rS   
cls_tokenss
             r.   r>   zVivitEmbeddings.forward   s    >J>P>P;
Jfe**<Rj*k
^^((*a);<
YY
J7Q?
 $#d&C&CJPVX]&^^J#d&>&>>J\\*-
r/   r?   )r@   rA   rB   rC   r   rK   Tensorintr0   rD   r>   rE   rF   s   @r.   rH   rH   P   sL    &D5<< &D &DUX &D]b]i]i &DPd r/   rH   modulequerykeyvalueattention_maskscalingrR   c                    t        j                  ||j                  dd            |z  }t        j                  j                  |dt         j                        j                  |j                        }t        j                  j                  ||| j                        }|||z  }t        j                  ||      }	|	j                  dd      j                         }	|	|fS )NrV   )r\   dtype)ptrainingr   r   )rK   matmulr8   r   r`   softmaxfloat32torx   rR   rz   
contiguous)
rp   rq   rr   rs   rt   ru   rR   kwargsattn_weightsattn_outputs
             r.   eager_attention_forwardr      s     <<s}}R'<=GL ==((2U]](SVVW\WbWbcL ==((6??([L !#n4,,|U3K''1-88:K$$r/   c            
            e Zd Zdeddf fdZ	 	 ddeej                     dede	e
ej                  ej                  f   e
ej                     f   fdZ xZS )	VivitSelfAttentionr,   rT   Nc                 2   t         |           |j                  |j                  z  dk7  r2t	        |d      s&t        d|j                   d|j                   d      || _        |j                  | _        t        |j                  |j                  z        | _        | j                  | j                  z  | _	        |j                  | _        | j                  dz  | _        d| _        t        j                  |j                  | j                  |j                         | _        t        j                  |j                  | j                  |j                         | _        t        j                  |j                  | j                  |j                         | _        y )	Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .g      F)bias)r   r   r%   num_attention_headshasattrr5   r,   ro   attention_head_sizeall_head_sizeattention_probs_dropout_probdropout_probru   	is_causalr   Linearqkv_biasrq   rr   rs   r*   s     r.   r   zVivitSelfAttention.__init__   sF    : ::a?PVXhHi"6#5#5"6 7334A7 
 #)#=#= #&v'9'9F<V<V'V#W !558P8PP"??//5YYv1143E3EFOO\
99V//1C1C&//ZYYv1143E3EFOO\
r/   	head_maskoutput_attentionsc           
         |j                   \  }}}| j                  |      j                  |d| j                  | j                        j                  dd      }| j                  |      j                  |d| j                  | j                        j                  dd      }| j                  |      j                  |d| j                  | j                        j                  dd      }	t        }
| j                  j                  dk7  rN| j                  j                  dk(  r|rt        j                  d       nt        | j                  j                     }
 |
| |	|||| j                  | j                  | j                   sdn| j"                        \  }}|j%                         d d	 | j&                  fz   }|j)                  |      }|r||f}|S |f}|S )
NrV   r   r   eagersdpaz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )r   ru   rR   rw   )r4   rr   rb   r   r   r8   rs   rq   r   r,   _attn_implementationloggerwarning_oncer   r   ru   rz   r   rX   r   r_   )r+   hidden_statesr   r   r:   
seq_length_	key_layervalue_layerquery_layerattention_interfacecontext_layerattention_probsnew_context_layer_shapeoutputss                  r.   r>   zVivitSelfAttention.forward   s    %2$7$7!
JHH]#T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 )@;;++w6{{//69>O##L
 '>dkk>^>^&_#)<nnLL#}}C$2C2C	*
& #0"4"4"6s";t?Q?Q>S"S%--.EF6G=/2 O\M]r/   NF)r@   rA   rB   r   r   r   rK   rn   rD   r   tupler>   rE   rF   s   @r.   r   r      sr    ]{ ]t ]. -1"'	1 ELL)1  	1
 
uU\\5<</0%2EE	F1r/   r   c                   |     e Zd ZdZdeddf fdZdej                  dej                  dej                  fdZ xZ	S )	VivitSelfOutputz
    The residual connection is defined in VivitLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    r,   rT   Nc                     t         |           t        j                  |j                  |j                        | _        t        j                  |j                        | _        y N)	r   r   r   r   r%   denserP   rQ   rR   r*   s     r.   r   zVivitSelfOutput.__init__  sB    YYv1163E3EF
zz&"<"<=r/   r   input_tensorc                 J    | j                  |      }| j                  |      }|S r   r   rR   r+   r   r   s      r.   r>   zVivitSelfOutput.forward  s$    

=1]3r/   )
r@   rA   rB   rC   r   r   rK   rn   r>   rE   rF   s   @r.   r   r   	  sD    
>{ >t >
U\\  RWR^R^ r/   r   c                        e Zd Zdeddf fdZdee   ddfdZ	 	 ddej                  de
ej                     d	edeeej                  ej                  f   eej                     f   fd
Z xZS )VivitAttentionr,   rT   Nc                     t         |           t        |      | _        t	        |      | _        t               | _        y r   )r   r   r   	attentionr   outputsetpruned_headsr*   s     r.   r   zVivitAttention.__init__  s0    +F3%f-Er/   headsc                 >   t        |      dk(  ry t        || j                  j                  | j                  j                  | j
                        \  }}t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _        t        | j                  j                  |      | j                  _	        t        | j                  j                  |d      | j                  _        | j                  j                  t        |      z
  | j                  _        | j                  j                  | j                  j                  z  | j                  _        | j
                  j                  |      | _        y )Nr   r   r[   )lenr   r   r   r   r   r   rq   rr   rs   r   r   r   union)r+   r   indexs      r.   prune_headszVivitAttention.prune_heads#  s   u:?74>>55t~~7Y7Y[_[l[l
u
  2$..2F2FN/0B0BEJ1$..2F2FN.t{{/@/@%QO .2^^-O-ORUV[R\-\*'+~~'I'IDNNLnLn'n$ --33E:r/   r   r   r   c                 h    | j                  |||      }| j                  |d   |      }|f|dd  z   }|S )Nr   r   )r   r   )r+   r   r   r   self_outputsattention_outputr   s          r.   r>   zVivitAttention.forward5  sE     ~~mY@QR;;|AF#%QR(88r/   r   )r@   rA   rB   r   r   r   ro   r   rK   rn   r   rD   r   r   r>   rE   rF   s   @r.   r   r     s    "{ "t ";S ;d ;* -1"'	|| ELL)  	
 
uU\\5<</0%2EE	Fr/   r   c                   $     e Zd Z fdZd Z xZS )VivitIntermediatec                 P   t         |           t        j                  |j                  |j
                        | _        t        j                  |j                        | _	        t        |j                  t              rt        |j                     | _        y |j                  | _        y r   )r   r   r   r   r%   intermediate_sizer   rP   rQ   rR   
isinstance
hidden_actstrr
   intermediate_act_fnr*   s     r.   r   zVivitIntermediate.__init__D  ss    YYv1163K3KL
zz&"<"<=f''-'-f.?.?'@D$'-'8'8D$r/   c                 l    | j                  |      }| j                  |      }| j                  |      }|S r   )r   r   rR   )r+   r   s     r.   r>   zVivitIntermediate.forwardM  s4    

=100?]3r/   r@   rA   rB   r   r>   rE   rF   s   @r.   r   r   C  s    9r/   r   c                   $     e Zd Z fdZd Z xZS )VivitOutputc                     t         |           t        j                  |j                  |j
                        | _        t        j                  |j                        | _	        y r   )
r   r   r   r   r   r%   r   rP   rQ   rR   r*   s     r.   r   zVivitOutput.__init__V  sB    YYv779K9KL
zz&"<"<=r/   c                 T    | j                  |      }| j                  |      }||z   }|S r   r   r   s      r.   r>   zVivitOutput.forward[  s.    

=1]3%4r/   r   rF   s   @r.   r   r   U  s    >
r/   r   c                   *     e Zd ZdZ fdZddZ xZS )
VivitLayerzNThis corresponds to the EncoderBlock class in the scenic/vivit implementation.c                 r   t         |           |j                  | _        d| _        t	        |      | _        t        |      | _        t        |      | _	        t        j                  |j                  |j                        | _        t        j                  |j                  |j                        | _        y )Nr   eps)r   r   chunk_size_feed_forwardseq_len_dimr   r   r   intermediater   r   r   	LayerNormr%   layer_norm_epslayernorm_beforelayernorm_afterr*   s     r.   r   zVivitLayer.__init__h  s    '-'E'E$'/-f5!&) "V-?-?VEZEZ [!||F,>,>FDYDYZr/   c                     | j                  | j                  |      ||      }|d   }|dd  }||z   }| j                  |      }| j                  |      }| j	                  ||      }|f|z   }|S )N)r   r   r   )r   r   r   r   r   )r+   r   r   r   self_attention_outputsr   r   layer_outputs           r.   r>   zVivitLayer.forwardr  s    !%!!-0/	 "0 "
 2!4(, )=8 ++M:((6 {{<?/G+r/   r   )r@   rA   rB   rC   r   r>   rE   rF   s   @r.   r   r   e  s    X[r/   r   c                   .     e Zd Z fdZ	 	 	 	 ddZ xZS )VivitEncoderc                     t         |           || _        t        j                  t        |j                        D cg c]  }t        |       c}      | _        d| _	        y c c}w r   )
r   r   r,   r   
ModuleListrangenum_hidden_layersr   layergradient_checkpointing)r+   r,   r   r-   s      r.   r   zVivitEncoder.__init__  sN    ]]fF^F^@_#`1Jv$6#`a
&+# $as   A#c                    |rdnd }|rdnd }t        | j                        D ]1  \  }}	|r||fz   }|||   nd }
 |	||
|      }|d   }|s)||d   fz   }3 |r||fz   }|st        d |||fD              S t        |||      S )N r   r   c              3   &   K   | ]	  }||  y wr   r   ).0vs     r.   	<genexpr>z'VivitEncoder.forward.<locals>.<genexpr>  s     mq_`_lms   )last_hidden_stater   
attentions)	enumerater   r   r   )r+   r   r   r   output_hidden_statesreturn_dictall_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputss               r.   r>   zVivitEncoder.forward  s     #7BD$5b4(4 	POA|#$58H$H!.7.CilO(IZ[M)!,M &9]1=M<O&O#	P   1]4D Dm]4EGZ$[mmm++*
 	
r/   )NFFTr   rF   s   @r.   r   r     s    , "!
r/   r   c                   $     e Zd Z fdZd Z xZS )VivitPoolerc                     t         |           t        j                  |j                  |j                        | _        t        j                         | _        y r   )r   r   r   r   r%   r   Tanh
activationr*   s     r.   r   zVivitPooler.__init__  s9    YYv1163E3EF
'')r/   c                 \    |d d df   }| j                  |      }| j                  |      }|S )Nr   )r   r   )r+   r   first_token_tensorpooled_outputs       r.   r>   zVivitPooler.forward  s6     +1a40

#566r/   r   rF   s   @r.   r   r     s    $
r/   r   c                   >    e Zd ZU eed<   dZdZdZg ZdZ	dZ
dZdZd Zy)VivitPreTrainedModelr,   vivitr9   Tc                    t        |t        j                  t        j                  f      rm|j                  j
                  j                  d| j                  j                         |j                  %|j                  j
                  j                          yyt        |t        j                        rz|j                  j
                  j                  d| j                  j                         |j                  2|j                  j
                  |j                     j                          yyt        |t        j                        rJ|j                  j
                  j                          |j                  j
                  j                  d       yt        |t              rI|j                   j
                  j                          |j"                  j
                  j                          yy)zInitialize the weightsr   )meanstdNg      ?)r   r   r   r'   weightdatanormal_r,   initializer_ranger   zero_	Embeddingpadding_idxr   fill_rH   rM   rO   )r+   rp   s     r.   _init_weightsz"VivitPreTrainedModel._init_weights  sI   fryy"))45 MM&&CT[[5R5R&S{{&  &&( '-MM&&CT[[5R5R&S!!-""6#5#56<<> .-KK""$MM$$S)0!!'')&&++113 1r/   N)r@   rA   rB   r   __annotations__base_model_prefixmain_input_namesupports_gradient_checkpointing_no_split_modules_supports_sdpa_supports_flash_attn_supports_flex_attn_supports_attention_backendr  r   r/   r.   r  r    s;    $O&*#N"&4r/   r  c                        e Zd Zd fd	Zd Zd Ze	 	 	 	 	 	 ddeej                     deej                     dee
   dee
   de
d	ee
   d
eeej                     ef   fd       Z xZS )
VivitModelc                    t         |   |       || _        t        |      | _        t        |      | _        t        j                  |j                  |j                        | _        |rt        |      nd| _        | j                          y)zv
        add_pooling_layer (bool, *optional*, defaults to `True`):
            Whether to add a pooling layer
        r   N)r   r   r,   rH   rS   r   encoderr   r   r%   r   	layernormr   pooler	post_init)r+   r,   add_pooling_layerr-   s      r.   r   zVivitModel.__init__  sk    
 	 )&1#F+f&8&8f>S>ST->k&)D 	r/   c                 .    | j                   j                  S r   )rS   rN   )r+   s    r.   get_input_embeddingszVivitModel.get_input_embeddings  s    ///r/   c                     |j                         D ]7  \  }}| j                  j                  |   j                  j	                  |       9 y)z
        Prunes heads of the model.

        Args:
            heads_to_prune:
                dict of {layer_num: list of heads to prune in this layer}
        N)itemsr  r   r   r   )r+   heads_to_pruner   r   s       r.   _prune_headszVivitModel._prune_heads  sE     +002 	CLE5LLu%//;;EB	Cr/   r9   r   r   r   r0   r   rT   c                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|t	        d      | j                  || j                   j                        }| j                  ||      }| j                  |||||      }|d   }	| j                  |	      }	| j                  | j                  |	      nd}
|s
|	|
f|dd z   S t        |	|
|j                  |j                        S )a  
        Examples:

        ```python
        >>> import av
        >>> import numpy as np

        >>> from transformers import VivitImageProcessor, VivitModel
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`list[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`list[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 32 frames
        >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container=container, indices=indices)

        >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
        >>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400")

        >>> # prepare video for the model
        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> # forward pass
        >>> outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 3137, 768]
        ```Nz You have to specify pixel_valuesrk   )r   r   r   r   r   r   )r   pooler_outputr   r   )r,   r   r   use_return_dictr5   get_head_maskr   rS   r  r  r  r   r   r   )r+   r9   r   r   r   r0   r   embedding_outputencoder_outputssequence_outputr   s              r.   r>   zVivitModel.forward  s*   h 2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]?@@&&y$++2O2OP	??<Rj?k,,/!5# ' 
 *!,..98<8OO4UY#]3oab6III)-')77&11	
 	
r/   )T)NNNNFN)r@   rA   rB   r   r!  r%  r   r   rK   FloatTensorrD   r   r   r   r>   rE   rF   s   @r.   r  r    s    "0	C  5915,0/3).&*s
u001s
 E--.s
 $D>	s

 'tns
 #'s
 d^s
 
uU&&')CC	Ds
 s
r/   r  a  
        ViViT Transformer model with a video classification head on top (a linear layer on top of the final hidden state of the
    [CLS] token) e.g. for Kinetics-400.

        <Tip>

            Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
            setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
            position embeddings to the higher resolution.

        </Tip>
    )custom_introc                        e Zd Z fdZe	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee	   dee	   de	dee	   d	e
eej                     ef   fd
       Z xZS )VivitForVideoClassificationc                 .   t         |   |       |j                  | _        t        |d      | _        |j                  dkD  r*t        j                  |j                  |j                        nt        j                         | _	        | j                          y )NF)r  r   )r   r   
num_labelsr  r  r   r   r%   Identity
classifierr  r*   s     r.   r   z$VivitForVideoClassification.__init__  ss      ++%@
 OUN_N_bcNc"))F$6$68I8IJikititiv 	r/   r9   r   labelsr   r   r0   r   rT   c                    ||n| j                   j                  }| j                  ||||||      }|d   }	| j                  |	dddddf         }
d}|}| j                  dk(  r2t               } ||
j                  d      |j                  d            }n<t               } ||
j                  d| j                        |j                  d            }|s|
f|dd z   }||f|z   S |S t        ||
|j                  |j                        S )a  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Examples:

        ```python
        >>> import av
        >>> import numpy as np
        >>> import torch

        >>> from transformers import VivitImageProcessor, VivitForVideoClassification
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`list[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`list[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 32 frames
        >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container=container, indices=indices)

        >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
        >>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400")

        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        ...     logits = outputs.logits

        >>> # model predicts one of the 400 Kinetics-400 classes
        >>> predicted_label = logits.argmax(-1).item()
        >>> print(model.config.id2label[predicted_label])
        LABEL_116
        ```N)r   r   r   r0   r   r   r   rV   r   )losslogitsr   r   )r,   r(  r  r4  r2  r   rb   r   r   r   r   )r+   r9   r   r5  r   r   r0   r   r   r,  r8  r7  loss_fctr   s                 r.   r>   z#VivitForVideoClassification.forward  s   z &1%<k$++B]B]**/!5%=#  
 "!*Aq!9:!#"9BRA+-B @&++b/RY,F)-)9TGf$EvE$!//))	
 	
r/   )NNNNNFN)r@   rA   rB   r   r   r   rK   r-  
LongTensorrD   r   r   r   r>   rE   rF   s   @r.   r0  r0  ~  s    
  5915-1,0/3).&*~
u001~
 E--.~
 ))*	~

 $D>~
 'tn~
 #'~
 d^~
 
uU&&')>>	?~
 ~
r/   r0  )r  r  r0  )r   )4rC   typingr   r   r   rK   torch.utils.checkpointr   torch.nnr   r   activationsr
   modeling_layersr   modeling_outputsr   r   r   modeling_utilsr   r   pytorch_utilsr   r   utilsr   r   r   configuration_vivitr   
get_loggerr@   r   Moduler   rH   rn   floatr   r   r   r   r   r   r   r   r   r  r  r0  __all__r   r/   r.   <module>rI     s    , ,    . ! 9 b b F Q 7 7 , 
		H	%)RYY )XLbii Ln %II%<<% 
% <<	%
 U\\*% % %>F FTbii &$RYY $N		 $"))  $+ $N(
299 (
V"))  4? 4 4> T
% T
 T
n L
"6 L
L
^ Pr/   