
    rh2                        d dl mZ d dlZd dlmZ d dlmZ erddlmZ  G d d      Z	 G d	 d
e	      Z
 G d de
      Z G d de
      Zy)    )annotationsN)Queue)TYPE_CHECKING   )AutoTokenizerc                      e Zd ZdZd Zd Zy)BaseStreamerzG
    Base class from which `.generate()` streamers should inherit.
    c                    t               )z;Function that is called by `.generate()` to push new tokensNotImplementedErrorselfvalues     t/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/generation/streamers.pyputzBaseStreamer.put        !##    c                    t               )zHFunction that is called by `.generate()` to signal the end of generationr   r   s    r   endzBaseStreamer.end$   r   r   N)__name__
__module____qualname____doc__r   r    r   r   r	   r	      s    $$r   r	   c                  6    e Zd ZdZdd	dZd Zd Zdd
dZd Zy)TextStreamera)  
    Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.

    <Tip warning={true}>

    The API for the streamer classes is still under development and may change in the future.

    </Tip>

    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenized used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
        decode_kwargs (`dict`, *optional*):
            Additional keyword arguments to pass to the tokenizer's `decode` method.

    Examples:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

        >>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
        >>> streamer = TextStreamer(tok)

        >>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
        >>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
        An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
        ```
    c                X    || _         || _        || _        g | _        d| _        d| _        y )Nr   T)	tokenizerskip_promptdecode_kwargstoken_cache	print_lennext_tokens_are_prompt)r   r   r    r!   s       r   __init__zTextStreamer.__init__K   s2    "&* &*#r   c                L   t        |j                        dkD  r|j                  d   dkD  rt        d      t        |j                        dkD  r|d   }| j                  r| j                  rd| _        y| j
                  j                  |j                                 | j                  j                  | j
                  fi | j                  }|j                  d      r|| j                  d }g | _        d| _        nt        |      dkD  rK| j                  t        |d               r.|| j                  d }| xj                  t        |      z  c_        n?|| j                  |j                  d      dz    }| xj                  t        |      z  c_        | j!                  |       y)	zm
        Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
           r   z'TextStreamer only supports batch size 1FN
 )lenshape
ValueErrorr    r$   r"   extendtolistr   decoder!   endswithr#   _is_chinese_charordrfindon_finalized_text)r   r   textprintable_texts       r   r   zTextStreamer.putU   s[    u{{aEKKNQ$6FGG!!HE ; ;*/D' 	/$t~~$$T%5%5L9K9KL ==!$.."23N!DDNY]t44Sb]C!$.."23NNNc.11N "$..4::c?Q3FGNNNc.11N~.r   c                
   t        | j                        dkD  rO | j                  j                  | j                  fi | j                  }|| j
                  d }g | _        d| _        nd}d| _        | j                  |d       y)z;Flushes any remaining cache and prints a newline to stdout.r   N T)
stream_end)r+   r"   r   r0   r!   r#   r$   r5   )r   r6   r7   s      r   r   zTextStreamer.endw   s~     t 1$(4>>(()9)9PT=O=OPD!$.."23N!DDNN&*#~$?r   c                4    t        |d|sd       yd       y)zNPrints the new text to stdout. If the stream is ending, also prints a newline.Tr9   N)flushr   )printr   r6   r:   s      r   r5   zTextStreamer.on_finalized_text   s    d$jBCdCr   c                    |dk\  r|dk  sF|dk\  r|dk  s<|dk\  r|dk  s2|dk\  r|dk  s(|d	k\  r|d
k  s|dk\  r|dk  s|dk\  r|dk  s
|dk\  r|dk  ryy)z6Checks whether CP is the codepoint of a CJK character.i N  i  i 4  iM  i   iߦ i  i? i@ i i  i i   i  i  i TFr   )r   cps     r   r2   zTextStreamer._is_chinese_char   sr     6\bFlfvg"-g"-g"-g"-fvg"-r   NF)r   r   r    boolr6   strr:   rB   )	r   r   r   r   r%   r   r   r5   r2   r   r   r   r   r   )   s$    B+ /D@Dr   r   c                  H     e Zd ZdZ	 d	 	 	 	 	 d fdZdd	dZd Zd Z xZS )
TextIteratorStreamera  
    Streamer that stores print-ready text in a queue, to be used by a downstream application as an iterator. This is
    useful for applications that benefit from accessing the generated text in a non-blocking way (e.g. in an interactive
    Gradio demo).

    <Tip warning={true}>

    The API for the streamer classes is still under development and may change in the future.

    </Tip>

    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenized used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
        timeout (`float`, *optional*):
            The timeout for the text queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
            in `.generate()`, when it is called in a separate thread.
        decode_kwargs (`dict`, *optional*):
            Additional keyword arguments to pass to the tokenizer's `decode` method.

    Examples:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
        >>> from threading import Thread

        >>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
        >>> streamer = TextIteratorStreamer(tok)

        >>> # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
        >>> generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
        >>> thread = Thread(target=model.generate, kwargs=generation_kwargs)
        >>> thread.start()
        >>> generated_text = ""
        >>> for new_text in streamer:
        ...     generated_text += new_text
        >>> generated_text
        'An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,'
        ```
    c                b    t        |   ||fi | t               | _        d | _        || _        y N)superr%   r   
text_queuestop_signaltimeoutr   r   r    rL   r!   	__class__s        r   r%   zTextIteratorStreamer.__init__   s1     	KA=A'r   c                    | j                   j                  || j                         |r2| j                   j                  | j                  | j                         yy)\Put the new text in the queue. If the stream is ending, also put a stop signal in the queue.rL   N)rJ   r   rL   rK   r>   s      r   r5   z&TextIteratorStreamer.on_finalized_text   sF    D$,,7OO 0 0$,,G r   c                    | S rH   r   r   s    r   __iter__zTextIteratorStreamer.__iter__       r   c                    | j                   j                  | j                        }|| j                  k(  r
t	               |S NrQ   )rJ   getrL   rK   StopIterationr   s     r   __next__zTextIteratorStreamer.__next__   s8    ##DLL#9D$$$/!Lr   FNr   r   r    rB   rL   zfloat | NonerA   rC   )	r   r   r   r   r%   r5   rS   rY   __classcell__rN   s   @r   rF   rF      s=    +\ \`&59LXHr   rF   c                  H     e Zd ZdZ	 d	 	 	 	 	 d fdZdd	dZd Zd Z xZS )
AsyncTextIteratorStreamera'	  
    Streamer that stores print-ready text in a queue, to be used by a downstream application as an async iterator.
    This is useful for applications that benefit from accessing the generated text asynchronously (e.g. in an
    interactive Gradio demo).

    <Tip warning={true}>

    The API for the streamer classes is still under development and may change in the future.

    </Tip>

    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenized used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
        timeout (`float`, *optional*):
            The timeout for the text queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
            in `.generate()`, when it is called in a separate thread.
        decode_kwargs (`dict`, *optional*):
            Additional keyword arguments to pass to the tokenizer's `decode` method.

    Raises:
        TimeoutError: If token generation time exceeds timeout value.

    Examples:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer, AsyncTextIteratorStreamer
        >>> from threading import Thread
        >>> import asyncio

        >>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")

        >>> # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
        >>> async def main():
        ...     # Important: AsyncTextIteratorStreamer must be initialized inside a coroutine!
        ...     streamer = AsyncTextIteratorStreamer(tok)
        ...     generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
        ...     thread = Thread(target=model.generate, kwargs=generation_kwargs)
        ...     thread.start()
        ...     generated_text = ""
        ...     async for new_text in streamer:
        ...         generated_text += new_text
        >>>     print(generated_text)
        >>> asyncio.run(main())
        An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
        ```
    c                    t        |   ||fi | t        j                         | _        d | _        || _        t        j                         | _        t        t        d      | _
        y )NrL   )rI   r%   asyncior   rJ   rK   rL   get_running_looploophasattrhas_asyncio_timeoutrM   s        r   r%   z"AsyncTextIteratorStreamer.__init__  sT     	KA=A!--/,,.	#*7I#> r   c                    | j                   j                  | j                  j                  |       |r;| j                   j                  | j                  j                  | j                         yy)rP   N)rc   call_soon_threadsaferJ   
put_nowaitrK   r>   s      r   r5   z+AsyncTextIteratorStreamer.on_finalized_text(  sL    		&&t'A'A4HII**4??+E+EtGWGWX r   c                    | S rH   r   r   s    r   	__aiter__z#AsyncTextIteratorStreamer.__aiter__.  rT   r   c                  K   	 | j                   r[t        j                  | j                        4 d {    | j                  j	                          d {   }d d d       d {    nAt        j
                  | j                  j	                         | j                         d {   }| j                  k(  r
t               |S 7 7 s7 e# 1 d {  7  sw Y   3xY w7 :# t        j                  $ r t               w xY wwrV   )	re   ra   rL   rJ   rW   wait_forrK   StopAsyncIterationTimeoutErrorr   s     r   	__anext__z#AsyncTextIteratorStreamer.__anext__1  s     	''"??4<<8 8 8"&//"5"5"77E8 8 8 &..t/B/B/Ddll[[ ((((**878 8 8 8 \## 	!. 	!s   D/C$ CC$ CC	CC$ %C&AC$ 'C"(C$ ,DC$ 	CC$ CCCC$ $DDrZ   r[   rA   rC   )	r   r   r   r   r%   r5   rj   ro   r\   r]   s   @r   r_   r_      s=    2j \`?&?59?LX?Yr   r_   )
__future__r   ra   queuer   typingr   models.autor   r	   r   rF   r_   r   r   r   <module>rt      sQ     #     +$ $v< vrD< DNU Ur   