#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/aimv2/modular_aimv2.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_aimv2.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Apple Inc. and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class Aimv2VisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Aimv2VisionModel`]. It is used to instantiate a
    AIMv2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the AIMv2
    [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2816):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        qkv_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the queries, keys and values.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the Linear layers or Not.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the for initializing all weight matrices.
        use_head (`str`, *optional*, defaults to `True`):
            Whether to use Attention Pooling Head or Not.
        is_native (`str`, *optional*, defaults to `False`):
            Whether to use ckpt trained for image native resolution or not.
    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a Aimv2VisionConfig with apple/aimv2-large-patch14-224 style configuration
    >>> configuration = Aimv2VisionConfig()

    >>> # Initializing a Aimv2VisionModel (with random weights) from the apple/aimv2-large-patch14-224 style configuration
    >>> model = Aimv2VisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "aimv2_vision_model"
    base_config_key = "vision_config"

    def __init__(
        self,
        hidden_size: int = 1024,
        intermediate_size: int = 2816,
        num_hidden_layers: int = 24,
        num_attention_heads: int = 8,
        num_channels: int = 3,
        image_size: int = 224,
        patch_size: int = 14,
        rms_norm_eps: float = 1e-5,
        attention_dropout: float = 0.0,
        qkv_bias: bool = False,
        mlp_bias: bool = False,
        hidden_act: str = "silu",
        initializer_range: float = 0.02,
        use_head: bool = True,
        is_native: bool = False,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.hidden_act = hidden_act

        self.use_head = use_head
        self.initializer_range = initializer_range
        self.mlp_bias = mlp_bias
        self.qkv_bias = qkv_bias
        self.rms_norm_eps = rms_norm_eps
        self.is_native = is_native


class Aimv2TextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Aimv2TextModel`]. It is used to instantiate a
    AIMv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the text encoder of the AIMv2
    [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the AIMv2 text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`Aimv2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        qkv_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the queries, keys and values.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the Linear layers or Not.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        pad_token_id (`int`, *optional*, defaults to 1):
            The id of the padding token in the vocabulary.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the vocabulary.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the for initializing all weight matrices.
    """

    model_type = "aimv2_text_model"
    base_config_key = "text_config"

    def __init__(
        self,
        vocab_size: int = 49408,
        hidden_size: int = 768,
        intermediate_size: int = 2048,
        num_hidden_layers: int = 12,
        num_attention_heads: int = 6,
        rms_norm_eps: float = 1e-5,
        attention_dropout: float = 0.0,
        qkv_bias: bool = False,
        mlp_bias: bool = False,
        hidden_act: str = "silu",
        pad_token_id: Optional[int] = None,
        bos_token_id: Optional[int] = None,
        eos_token_id: int = 49407,
        max_position_embeddings: int = 77,
        initializer_range: bool = 0.02,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.max_position_embeddings = max_position_embeddings
        self.hidden_act = hidden_act
        self.attention_dropout = attention_dropout

        self.initializer_range = initializer_range
        self.mlp_bias = mlp_bias
        self.qkv_bias = qkv_bias
        self.rms_norm_eps = rms_norm_eps


class Aimv2Config(PretrainedConfig):
    r"""
    [`Aimv2Config`] is the configuration class to store the configuration of a [`Aimv2Model`]. It is used to
    instantiate a AIMv2 model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the AIMv2
    [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Aimv2TextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Aimv2VisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import Aimv2Config, Aimv2Model

    >>> # Initializing a Aimv2Config with apple/aimv2-large-patch14-224-lit style configuration
    >>> configuration = Aimv2Config()

    >>> # Initializing a Aimv2Model (with random weights) from the apple/aimv2-large-patch14-224-lit style configuration
    >>> model = Aimv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a Aimv2Config from a Aimv2TextConfig and a Aimv2VisionConfig
    >>> from transformers import Aimv2TextConfig, Aimv2VisionConfig

    >>> # Initializing a AIMv2Text and AIMv2Vision configuration
    >>> config_text = Aimv2TextConfig()
    >>> config_vision = Aimv2VisionConfig()

    >>> config = Aimv2Config(text_config=config_text, vision_config=config_vision)
    ```"""

    model_type = "aimv2"
    sub_configs = {"text_config": Aimv2TextConfig, "vision_config": Aimv2VisionConfig}

    def __init__(
        self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
    ):
        super().__init__(**kwargs)

        if text_config is None:
            text_config = {}
            logger.info("`text_config` is `None`. Initializing the `Aimv2TextConfig` with default values.")

        if vision_config is None:
            vision_config = {}
            logger.info("`vision_config` is `None`. initializing the `Aimv2VisionConfig` with default values.")

        self.text_config = Aimv2TextConfig(**text_config)
        self.vision_config = Aimv2VisionConfig(**vision_config)
        self.projection_dim = projection_dim
        self.logit_scale_init_value = logit_scale_init_value
        self.max_logit_scale = 100.0


__all__ = ["Aimv2Config", "Aimv2VisionConfig", "Aimv2TextConfig"]
