#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/colqwen2/modular_colqwen2.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_colqwen2.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Union

from torch import nn

from transformers import AutoModelForImageTextToText

from ...cache_utils import Cache
from ...modeling_utils import PreTrainedModel
from ...utils import ModelOutput, auto_docstring, can_return_tuple, is_torch_available
from .configuration_colqwen2 import ColQwen2Config


if is_torch_available():
    import torch


@auto_docstring
class ColQwen2PreTrainedModel(PreTrainedModel):
    config: ColQwen2Config
    base_model_prefix = "model"
    _no_split_modules = []
    _supports_sdpa = True
    _supports_flash_attn = True
    _supports_flex_attn = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.vlm_config.text_config.initializer_range
        )

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for ColQwen2 embeddings output.
    """
)
class ColQwen2ForRetrievalOutput(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
        The embeddings of the model.
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    """

    loss: Optional[torch.FloatTensor] = None
    embeddings: Optional[torch.Tensor] = None
    past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None


@auto_docstring(
    custom_intro="""
    Following the ColPali approach, ColQwen2 leverages VLMs to construct efficient multi-vector embeddings directly
    from document images (“screenshots”) for document retrieval. The model is trained to maximize the similarity
    between these document embeddings and the corresponding query embeddings, using the late interaction method
    introduced in ColBERT.

    Using ColQwen2 removes the need for potentially complex and brittle layout recognition and OCR pipelines with
    a single model that can take into account both the textual and visual content (layout, charts, ...) of a document.

    ColQwen2 is part of the ColVision model family, which was introduced with ColPali in the following paper:
    [*ColPali: Efficient Document Retrieval with Vision Language Models*](https://huggingface.co/papers/2407.01449).
    """
)
class ColQwen2ForRetrieval(ColQwen2PreTrainedModel):
    _checkpoint_conversion_mapping = {}

    def __init__(self, config: ColQwen2Config):
        super().__init__(config)
        self.config = config
        self.vocab_size = config.vlm_config.text_config.vocab_size

        self.vlm = AutoModelForImageTextToText.from_config(config.vlm_config)

        self.embedding_dim = self.config.embedding_dim
        self.embedding_proj_layer = nn.Linear(
            self.config.vlm_config.text_config.hidden_size,
            self.embedding_dim,
        )
        self._tied_weights_keys = [f"vlm.{k}" for k in (self.vlm._tied_weights_keys or [])]

        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        labels: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> ColQwen2ForRetrievalOutput:
        r"""
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        """
        if pixel_values is not None:
            pixel_values = pixel_values.to(dtype=self.dtype)  # (batch_size, max_num_patches, pixel_values)

        # Handle the custom "pixel_values" input obtained with `ColQwen2Processor` through unpadding
        if pixel_values is not None and image_grid_thw is not None:
            # NOTE: image_grid_thw: (batch_size, 3) where image_grid_thw[i] = (num_patches_h, num_patches_w, temporal_patch_size)
            offsets = image_grid_thw[:, 1] * image_grid_thw[:, 2]  # (num_patches_h, num_patches_w)
            pixel_values = torch.cat(
                [pixel_sequence[:offset] for pixel_sequence, offset in zip(pixel_values, offsets)],
                dim=0,
            )  # (num_patches_h * num_patches_w, pixel_values)

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        position_ids, rope_deltas = self.vlm.model.get_rope_index(
            input_ids=input_ids,
            image_grid_thw=image_grid_thw,
            video_grid_thw=None,
            attention_mask=attention_mask,
        )

        # Custom data preparation to fix an issue with the gradient flow when training with multiple GPUs.
        if inputs_embeds is None:
            inputs_embeds = self.vlm.language_model.embed_tokens(input_ids)

            if pixel_values is not None:
                pixel_values = pixel_values.type(self.vlm.visual.get_dtype())
                image_embeds = self.vlm.visual(pixel_values, grid_thw=image_grid_thw)
                image_mask = (
                    (input_ids == self.config.vlm_config.image_token_id).unsqueeze(-1).expand_as(inputs_embeds)
                )
                image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        vlm_output = self.vlm.model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        vlm_hidden_states = vlm_output.hidden_states if output_hidden_states else None

        last_hidden_states = vlm_output[0]  # (batch_size, sequence_length, hidden_size)
        embeddings = self.embedding_proj_layer(last_hidden_states)  # (batch_size, sequence_length, dim)

        # L2 normalization
        embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True)  # (batch_size, sequence_length, dim)
        if attention_mask is not None:
            embeddings = embeddings * attention_mask.unsqueeze(-1)  # (batch_size, sequence_length, dim)

        return ColQwen2ForRetrievalOutput(
            embeddings=embeddings,
            past_key_values=vlm_output.past_key_values,
            hidden_states=vlm_hidden_states,
            attentions=vlm_output.attentions,
        )

    def get_input_embeddings(self):
        return self.vlm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.vlm.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.vlm.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.vlm.set_output_embeddings(new_embeddings)

    def tie_weights(self):
        return self.vlm.tie_weights()

    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        mean_resizing: bool = True,
    ) -> nn.Embedding:
        model_embeds = self.vlm.resize_token_embeddings(
            new_num_tokens=new_num_tokens,
            pad_to_multiple_of=pad_to_multiple_of,
            mean_resizing=mean_resizing,
        )

        self.config.vlm_config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vlm_config.vocab_size = model_embeds.num_embeddings
        self.vlm.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings

        return model_embeds


__all__ = ["ColQwen2ForRetrieval", "ColQwen2PreTrainedModel"]
