
    rh`'                     `    d dl mZmZ d dlmZ  ej
                  e      Z G d de      ZdgZ	y)   )PretrainedConfiglayer_type_validation)loggingc                        e Zd ZdZdZdgZi dddddddd	d
dddddddddddddddddddddddZdgdgfddgdgfdgdgfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d  fd	Z xZ	S )!Dots1Configa  
    This is the configuration class to store the configuration of a [`Dots1Model`]. It is used to instantiate a
    `dots.llm1` model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of
    [rednote-hilab/dots.llm1.base](https://huggingface.co/rednote-hilab/dots.llm1.base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 152064):
            Vocabulary size of the model. Defines the number of different tokens that can be represented by the
            `input_ids` passed when calling [`Dots1Model`].
        hidden_size (`int`, *optional*, defaults to 4608):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 10944):
            Dimension of the MLP representations.
        moe_intermediate_size (`int`, *optional*, defaults to 1408):
            Dimension of the MoE representations.
        num_hidden_layers (`int`, *optional*, defaults to 62):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            Number of key/value heads for Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, Multi
            Head Attention (MHA) is used. If `num_key_value_heads=1`, Multi Query Attention (MQA) is used. Otherwise,
            Grouped Query Attention (GQA) is used. If not specified, defaults to `num_attention_heads`.
        n_shared_experts (`int`, *optional*, default=None):
            Number of shared experts. None means dense model.
        n_routed_experts (`int`, *optional*, default=None):
            Number of routed experts. None means dense model.
        n_group (`int`, *optional*, defaults to 1):
            Number of groups for routed experts.
        topk_group (`int`, *optional*, defaults to 1):
            Number of selected groups for each token (selected experts only within `topk_group` groups).
        num_experts_per_tok (`int`, *optional*, default=None):
            Number of selected experts. None means dense model.
        first_k_dense_replace (`int`, *optional*, defaults to 0):
            Number of dense layers at the beginning of the model before the first MoE layer.
        norm_topk_prob (`bool`, *optional*, defaults to `False`):
            Whether to normalize the weights of the routed experts.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string).
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            Maximum sequence length the model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            Standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            Epsilon used by the RMS normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions. Only relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie the input and output word embeddings.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Dictionary for scaling RoPE embeddings. Supports `{"type": strategy name, "factor": scaling factor}`.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the self-attention projections.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            Dropout ratio for the attention probabilities.
        routed_scaling_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for routed experts.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window for attention. If not specified, defaults to `4096`.
        max_window_layers (`int`, *optional*, defaults to 62):
            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
            additional layer afterwards will use SWA (Sliding Window Attention).
        layer_types (`list`, *optional*):
            Attention pattern for each layer.

    Examples:
        ```python
        >>> from transformers import Dots1Model, Dots1Config

        >>> # Initializing a Dots1 style configuration
        >>> configuration = Dots1Config()

        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    dots1past_key_valueszlayers.*.self_attn.q_projcolwisezlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projrowwisez layers.*.mlp.experts.*.gate_projlocal_colwisezlayers.*.mlp.experts.*.up_projz layers.*.mlp.experts.*.down_projlocal_rowwisezlayers.*.mlp.experts.*localz%layers.*.mlp.shared_experts.gate_projz#layers.*.mlp.shared_experts.up_projz%layers.*.mlp.shared_experts.down_projzlayers.*.mlp.shared_expertszlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projzlayers.*.mlpgather	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        || _	        || _
        || _        ||}|
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        | j4                  Et7        | j
                        D cg c]!  }| j0                  || j2                  k\  rdnd# c}| _        t9        | j4                         t;        | x  dd|i| y c c}w )Nsliding_attentionfull_attentiontie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizemoe_intermediate_sizenum_hidden_layersnum_attention_headsn_shared_expertsn_routed_expertsnum_experts_per_tokfirst_k_dense_replacenorm_topk_probn_group
topk_groupnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutrouted_scaling_factorsliding_windowmax_window_layerslayer_typesranger   super__init__) selfr   r   r   r    r!   r"   r*   r#   r$   r(   r)   r%   r&   r'   r+   r   r,   r-   r.   r   r/   r0   r1   r2   r3   r4   r5   r6   kwargsi	__class__s                                   /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/dots1/configuration_dots1.pyr9   zDots1Config.__init__   so   @ %'>$&!2%:"!2#6  0 0#6 %:",&"5$#6 $!2("$(,!2%:",!2&#
 t556	   &&2qD<R<R7R $%& D 	d../ 	
 3	
	
 s   &&D;)i R i   i*  i  >       r@   NN   rA   N    Fsilui   g{Gz?gư>TFg     @NFg        g      ?i   r?   N)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr9   __classcell__)r=   s   @r>   r   r      sv   Qf J#4"5#Y#Y 	$Y 	$Y	
 	+O 	)/ 	+O 	!' 	0 	. 	0 	&w 	!/ 	 	!/  	!( &(9:#%568IJ!"_$56 "  $!!;J
 J
    r   N)
configuration_utilsr   r   utilsr   
get_loggerrD   loggerr   __all__r   rM   r>   <module>rS      s;    K  
		H	%z
" z
z /rM   