
    rhAd                         d dl mZ d dlmZmZ d dlZddlmZm	Z	m
Z
 ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZm Z m!Z!  e        rd dl"Z" e!jF                  e$      Z% G d	 d
e      Z&d
gZ'y)    )Iterable)OptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbresizeto_channel_dimension_format)OPENAI_CLIP_MEANOPENAI_CLIP_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_flat_list_of_imagesmake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingc                       e Zd ZdZdgZdddej                  ddddddf
dedee	e
ef      d	ed
ededeeef   dedeeeee   f      deeeee   f      dee   ddf fdZdej                  ddfdej"                  dee	e
ef   ef   deeeeef      d
edeee
ef      deee
ef      dej"                  fdZ e       ddddddddddej,                  dfdedee   dee	e
ef      d
edee   dee   dee   deeeee   f      deeeee   f      deee
ef      dee   dedeee
ef      dej4                  j4                  fd       Z	 	 	 ddej"                  deeeeeef   f   deee
ef      deee
ef      dej8                  f
dZ	 	 	 	 	 	 	 ddedee   dee   dee   deee      deee      dee
   dee
   fdZ	 d dej8                  deeee   f   deeee   f   deee
ef      dej8                  f
dZ  xZ!S )!JanusImageProcessora
  
    Constructs a JANUS image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        min_size (`int`, *optional*, defaults to 14):
            The minimum allowed size for the resized image. Ensures that neither the height nor width
            falls below this value after resizing.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
            overridden by the `resample` parameter in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
            `do_rescale` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
            overridden by the `rescale_factor` parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
            overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTN   gp?	do_resizesizemin_sizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc           	      n   t        |   di | ||nddd}t        |d      }|| _        || _        || _        || _        || _        || _        ||nt        | _
        |	|	nt        | _        |
| _        || _        |d| _        y t!        |D cg c]  }t#        |dz         c}      | _        y c c}w )Ni  )heightwidthTdefault_to_square)   r2   r2       )super__init__r	   r"   r#   r%   r&   r'   r(   r   r)   r   r*   r+   r$   background_colortupleint)selfr"   r#   r$   r%   r&   r'   r(   r)   r*   r+   kwargsx	__class__s                /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/janus/image_processing_janus.pyr6   zJanusImageProcessor.__init__c   s     	"6"'tc-JTT:"	 $,((2(>*DT&/&;, $3D!$)*LA3q3w<*L$MD!*Ls   B2imager7   data_formatinput_data_formatc                    ||n| j                   }|t        |      }t        ||      \  }}	t        ||	      }
t	        |d      }|d   |d   k7  rt        d|d    d|d          |d   }||
z  }t        t        ||z        | j                        t        t        |	|z        | j                        g}t        |f||||d|}| j                  |||      }|S )	a  
        Resize an image to dynamically calculated size.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]` or `int`):
                The size to resize the image to. If a dictionary, it should have the keys `"height"` and `"width"`.
            background_color (`tuple[int, int, int]`):
                The background color to use for the padding.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `None`: will be inferred from input
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        Tr0   r.   r/   z5Output height and width must be the same. Got height=z and width=)r#   r%   r@   rA   )r?   r7   rA   )
r7   r   r   maxr	   
ValueErrorr9   r$   r   pad_to_square)r:   r?   r#   r7   r%   r@   rA   r;   r.   r/   max_sizedeltaoutput_size_nonpaddeds                r>   r   zJanusImageProcessor.resize   s-   L 0@/K+QUQfQf$ >u E&u.?@vu%TT:>T']*GXGWWbcghocpbqr  H~x FUN#T]]3EEM"DMM2!

 
&#/
 
 ""-/ # 

     imagesreturn_tensorsc           
         ||n| j                   }||n| j                  }||n| j                  }||n| j                  }||n| j                  }||n| j
                  }|	|	n| j                  }	||n| j                  }||n| j                  }t        |d      }t        |      }t        |      st        d      t        |||||	|||       |r|D cg c]  }t        |       }}|D cg c]  }t        |       }}|r#t!        |d         rt"        j%                  d       |t'        |d         }|r"|D cg c]  }| j)                  ||||       }}|r!|D cg c]  }| j+                  |||       }}|r"|D cg c]  }| j-                  |||	|	       }}|D cg c]  }t/        |||
       }}t1        d|i|
      }|S c c}w c c}w c c}w c c}w c c}w c c}w )am  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Controls the size of the image after `resize`. The shortest edge of the image is resized to
                `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
                is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
                edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to normalize the image by if `do_normalize` is set to `True`.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Fr0   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r&   r'   r(   r)   r*   r"   r#   r%   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)r?   r#   r%   rA   )r?   scalerA   r?   meanstdrA   input_channel_dimr    datatensor_type)r"   r%   r&   r'   r(   r)   r*   r+   r#   r	   r   r   rD   r   r
   r   r   loggerwarning_oncer   r   rescale	normalizer   r   )r:   rJ   r"   r#   r%   r&   r'   r(   r)   r*   rK   r+   r@   rA   r?   encoded_outputss                   r>   
preprocesszJanusImageProcessor.preprocess   s^   @ "+!6IDNN	'38#-#9Zt
+9+E4K^K^'3'?|TEVEV#-#9Zt
!*!6IDNN	+9+E4K^K^'tTYYTU;)&1F#: 
 	&!)%!		
 9?@nU+@F@ 6<<E.'<</&)4s
 $ >vay I $ %dXYjkF 
  $ 5RcdF 
  $ U^opF  ou
ej'{N_`
 
 '^V,DR`aO A =

s$   G0G?G#GG$(G)c                 N   t        ||      \  }}|t        j                  k(  r|j                  d   n|j                  d   }||k(  r|t	        |||      }|S |}|S t        ||      }t        |t              r|g}nt        |      |k7  rt        d| d      |t        j                  k(  r~t        j                  |||f|j                        }	t        |      D ]  \  }
}||	|
ddddf<    ||kD  r||z
  dz  }||	dd|||z   ddf<   |	S ||z
  dz  }||	dddd|||z   f<   |	S t        j                  |||f|j                        }	t        |      D ]  \  }
}||	dddd|
f<    ||kD  r||z
  dz  }||	|||z   ddddf<   |	S ||z
  dz  }||	dd|||z   ddf<   |	S )a}  
        Pads an image to a square based on the longest edge.

        Args:
            image (`np.ndarray`):
                The image to pad.
            background_color (`int` or `tuple[int, int, int]`, *optional*, defaults to 0):
                The color to use for the padding. Can be an integer for single channel or a
                tuple of integers representing for multi-channel images. If passed as integer
                in mutli-channel mode, it will default to `0` in subsequent channels.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

        Returns:
            `np.ndarray`: The padded image.
        r   Nz(background_color must have no more than z) elements to match the number of channels)dtype   )r   r   FIRSTshaper   rC   
isinstancer9   lenrD   npzerosr^   	enumerate)r:   r?   r7   r@   rA   r.   r/   num_channelsmax_dimresulticolorstarts                r>   rE   z!JanusImageProcessor.pad_to_squareX  s+   < 'u.?@):>N>T>T)Tu{{1~Z_ZeZefhZiU? * ,E;@QR 
 L  
 Lfe$ &, 01!"l2:<.Hqr   0 6 66XX|Wg>ekkRF%&67 (5"'q!Qw(v~ 6)a/7<q%%&.0!34  !5Q.6;q!UUU]223  XXw>ekkRF%&67 (5"'q!Qw(v~ 6)a/7<uuv~-q!34
  !5Q.6;q%%%-/23rI   c	                    ||n| j                   }|d| j                  z  n|}||n| j                  }||n| j                  }||n| j                  }t        |      }t        |d   t        j                  j                        rt        |      dkD  r|S |d   S |t        |d         }g }	|D ]  }
t        |
      }
|r| j                  |
|||      }
|rC| j                  |
||      }
|
j                  dd      j                  t         j"                        }
|rB|r@|dk(  r;t%        |
t&        j(                  |	      }
t        j                  j+                  |
      }
|	j-                  |
        d
|	i}|dk7  r|nd}t/        ||      S )znApplies post-processing to the decoded image tokens by reversing transformations applied during preprocessing.Ng      ?r      )r?   r)   r*   rA   )rM   rA   r3   zPIL.Image.ImagerQ   r    rS   )r&   r'   r(   r)   r*   r   rb   PILImagerc   r   r   unnormalizerX   clipastyperd   uint8r   r   LAST	fromarrayappendr   )r:   rJ   r&   r'   r(   r)   r*   rA   rK   r    r?   rT   s               r>   postprocesszJanusImageProcessor.postprocess  s    $.#9Zt
6D6Lt222R`'3'?|TEVEV#-#9Zt
!*!6IDNN	$V,fQi1 [1_6;&);$ >vay I 	'E"5)E((J)_p )  U.Tef

1c*11"((;
~AR/R3E;K;P;Pduv		++E2&!	'$ -+9=N+NTX>BBrI   c                    d}t        |t              r(t        |      |k7  r t        d| dt        |             |g|z  }t        |t              r(t        |      |k7  r t        d| dt        |             |g|z  }t	        d t        ||      D              }t	        d |D              }| j                  ||||      }|S )a~  
        Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`.
        image = (image * image_std) + image_mean
        Args:
            image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`):
                Batch of pixel values to postprocess.
            image_mean (`float` or `Iterable[float]`):
                The mean to use for unnormalization.
            image_std (`float` or `Iterable[float]`):
                The standard deviation to use for unnormalization.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        r   zmean must have z$ elements if it is an iterable, got zstd must have c              3   .   K   | ]  \  }}| |z    y wNr4   ).0rO   rP   s      r>   	<genexpr>z2JanusImageProcessor.unnormalize.<locals>.<genexpr>  s     WytSus{Ws   c              3   &   K   | ]	  }d |z    yw)rn   Nr4   )r|   rP   s     r>   r}   z2JanusImageProcessor.unnormalize.<locals>.<genexpr>  s     ;#a#g;s   rN   )rb   r   rc   rD   r8   ziprY   )r:   r?   r)   r*   rA   rg   rev_image_meanrev_image_stds           r>   rq   zJanusImageProcessor.unnormalize  s    0 j(+:,. ?<.@dehisetdu!vww$4Ji*9~- >,?cdghqdrcs!tuu"l2IWC
I<VWW;;;n-Sd  
 rI   )r   NN)NNNNNNNr{   )"__name__
__module____qualname____doc__model_input_namesr   BICUBICboolr   dictstrr9   r   floatlistr6   rd   ndarrayr8   r   r   r   r`   r   r   ro   rp   r[   arrayrE   rx   r   rq   __classcell__)r=   s   @r>   r   r   ;   s   #J (( )-'9'A'A,3!:>9=)- N N tCH~& N 	 N
 % N  N c5j) N  N U5$u+#567 N E%e"456 N ! N 
 NL <@'9'A'A>BDHIzzI DcNC'(I #5c3#78	I
 %I eC)9$9:;I $E#/?*?$@AI 
IV %& %))-'+%)*.'+:>9=;?)-(8(>(>DHEE D>E tCH~&	E
 %E TNE !E tnE U5$u+#567E E%e"456E !sJ!78E !E &E $E#/?*?$@AE 
E 'ET >?>BDHHzzH  U3S=%9 9:H eC)9$9:;	H
 $E#/?*?$@AH 
HZ &**.'+,0+/+/(,1C1C TN1C !	1C
 tn1C T%[)1C DK(1C $C=1C !1Cp EI+xx+ %%01+ /0	+
 $E#/?*?$@A+ 
+rI   r   )(collections.abcr   typingr   r   numpyrd   image_processing_utilsr   r   r	   image_transformsr
   r   r   image_utilsr   r   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   ro   
get_loggerr   rV   r   __all__r4   rI   r>   <module>r      ss   , % "  U U S S      
		H	%E, EP !
!rI   