
    rh־                        d Z ddlmZmZmZ ddlZddlZddlmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZmZmZmZ ddlmZm Z  ddl!m"Z" ddl#m$Z$m%Z%m&Z&m'Z'm(Z( ddl)m*Z*  e'       rddl+m,Z, ddl-m.Z.  e(j^                  e0      Z1 G d dejd                        Z3	 d2dejh                  dejj                  dejj                  dejj                  deejj                     de6de6fdZ7 G d d ejh                        Z8 G d! d"e      Z9e% G d# d$e              Z: G d% d&e:      Z;e% G d' d(e:             Z< G d) d*e:e      Z= e%d+,       G d- d.e:             Z>e% G d/ d0e:             Z?g d1Z@y)3zPyTorch OPT model.    )CallableOptionalUnionN)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)CacheDynamicCache)GenerationMixin)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPast)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)TransformersKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )	OPTConfig)	BlockMask)make_flex_block_causal_maskc                   x     e Zd ZdZdedef fdZ	 	 d	dej                  dedeej                     f fdZ	 xZ
S )
OPTLearnedPositionalEmbeddingzN
    This module learns positional embeddings up to a fixed maximum size.
    num_embeddingsembedding_dimc                 N    d| _         t        | 	  || j                   z   |       y N   )offsetsuper__init__)selfr$   r%   	__class__s      w/var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/opt/modeling_opt.pyr+   z&OPTLearnedPositionalEmbedding.__init__8   s$     $++5}E    attention_maskpast_key_values_lengthposition_idsc                     |8t        j                  |d      }||z  dz
  j                         }|dd|df   }t        |   || j
                  z         S )z3`input_ids_shape` is expected to be [bsz x seqlen].Nr   dim)torchcumsumlongr*   forwardr)   )r,   r0   r1   r2   r-   s       r.   r9   z%OPTLearnedPositionalEmbedding.forward>   s^      <<A>L(>9A=CCEL'+A+B(BCLw|dkk9::r/   )r   N)__name__
__module____qualname____doc__intr+   r6   
LongTensorr   r9   __classcell__r-   s   @r.   r#   r#   3   s]    Fs F3 F '(37	;((; !$; u//0	; ;r/   r#   modulequerykeyvaluer0   scalingdropoutc                    t        j                  ||j                  dd            |z  }|||z   }t        j                  j                  |dt         j                        j                  |j                        }t        j                  j                  ||| j                        }t        j                  ||      }	|	j                  dd      j                         }	|	|fS )N)r5   dtypeptrainingr   r(   )r6   matmul	transposer   
functionalsoftmaxfloat32torK   rG   rN   
contiguous)
rB   rC   rD   rE   r0   rF   rG   kwargsattn_weightsattn_outputs
             r.   eager_attention_forwardrY   P   s     <<s}}R'<=GL!#n4==((2U]](SVVW\WbWbcL==((6??([L,,|U3K''1-88:K$$r/   c                   (    e Zd ZdZ	 ddedee   f fdZ	 	 	 	 	 ddej                  dee
ej                        deej                     deej                     d	ed
eej                     de
ej                  eej                     ee   f   fdZ xZS )OPTAttentionz=Multi-headed attention from 'Attention Is All You Need' paperconfig	layer_idxc                    t         |           || _        |j                  | _        |j
                  | _        |j                  | _        |j                  | _	        || _
        |-t        j                  d| j                  j                   d       | j                  | j                  z  | _        d| _        | j                  | j                  z  | j                  k7  r&t#        d| j                   d| j                   d      | j                  dz  | _        t'        j(                  | j                  | j                  | j                        | _        t'        j(                  | j                  | j                  | j                        | _        t'        j(                  | j                  | j                  | j                        | _        t'        j(                  | j                  | j                  | j                        | _        y )	NzInstantiating z without passing a `layer_idx` is not recommended and will lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` when creating this class.Tz;embed_dim must be divisible by num_heads (got `embed_dim`: z and `num_heads`: z).g      ࿩bias)r*   r+   r\   hidden_size	embed_dimnum_attention_heads	num_headsattention_dropoutrG   enable_biasr]   loggerwarning_oncer-   r:   head_dim	is_causal
ValueErrorrF   r   Lineark_projv_projq_projout_proj)r,   r\   r]   rV   r-   s       r.   r+   zOPTAttention.__init__j   s    	++33//!--" !8!8 9 :, , $..8MMDNN*t~~=MdnnM]$T^^$4B8  }}d*iiTEUEUViiTEUEUViiTEUEUV		$..$..tGWGWXr/   hidden_statespast_key_valuer0   layer_head_maskoutput_attentionscache_positionreturnc                    |j                         \  }}	}
| j                  |      | j                  z  }|j                  |d| j                  | j
                        j                  dd      }| j                  |      }| j                  |      }|j                  |d| j                  | j
                        j                  dd      }|j                  |d| j                  | j
                        j                  dd      }|#|j                  ||| j                  d|i      \  }}t        }| j                  j                  dk7  rN| j                  j                  dk(  r|rt        j                  d       nt         | j                  j                     } || ||||f| j"                  sd	n| j$                  d
d|\  }}|j'                  ||	d      j)                         }| j+                  |      }|sd}||fS )z#Input shape: Batch x Time x ChannelrI   r   r(   Nru   eagersdpaz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.              ?)rG   rF   )sizero   rF   viewrd   ri   rP   rm   rn   updater]   rY   r\   _attn_implementationrg   rh   r   rN   rG   reshaperU   rp   )r,   rq   rr   r0   rs   rt   ru   rV   bsztgt_len_query_states
key_statesvalue_statesattention_interfacerX   rW   s                    r.   r9   zOPTAttention.forward   s    (,,.Wa {{=1DLL@#((b$..$--PZZ[\^_`[[/
{{=1__S"dnndmmLVVWXZ[\
#((b$..$--PZZ[\^_`%'5'<'<L$..;K^:\($J )@;;++w6{{//69>O##L
 '>dkk>^>^&_#$7	%
  $}}C$,,	%
 	%
!\ "))#w;FFHmmK0 LL((r/   N)NNNFN)r:   r;   r<   r=   r   r   r>   r+   r6   Tensortupleboolr   r9   r@   rA   s   @r.   r[   r[   g   s    G
 $(!Y!Y C=!YL 9=1526"'15<)||<) !u||!45<) !.	<)
 "%,,/<)  <) !.<) 
u||Xell3Xe_D	E<)r/   r[   c                   t    e Zd Zddedee   f fdZ	 	 	 	 	 	 	 ddej                  deej                     deej                     dee	ej                        dee
   d	ee
   d
eej                     deej                     dee   de	ej                  ee	ej                  ej                  f      f   fdZ xZS )OPTDecoderLayerr\   r]   c                    t         |           |j                  | _        t	        ||      | _        |j                  | _        |j                  | _        t        |j                     | _
        t        j                  | j                  |j                        | _        t        j                  | j                  |j                   |j"                        | _        t        j                  |j                   | j                  |j"                        | _        t        j                  | j                  |j                        | _        y )N)r\   r]   elementwise_affiner_   )r*   r+   ra   rb   r[   	self_attndo_layer_norm_beforerG   r   activation_functionactivation_fnr   	LayerNormlayer_norm_elementwise_affineself_attn_layer_normrl   ffn_dimrf   fc1fc2final_layer_norm)r,   r\   r]   r-   s      r.   r+   zOPTDecoderLayer.__init__   s    ++%VyI$*$?$?!~~#F$>$>?$&LLNNv/S/S%
! 99T^^V^^&BTBTU99V^^T^^&BTBTU "T^^PVPtPt ur/   rq   r0   rs   rr   rt   	use_cacher2   ru   rV   rv   c	                    |}
| j                   r| j                  |      } | j                  d|||||||d|	\  }}t        j                  j                  || j
                  | j                        }|
|z   }| j                   s| j                  |      }|j                  }|j                  d|j                  d            }|}
| j                   r| j                  |      }| j                  |      }| j                  |      }| j                  |      }t        j                  j                  || j
                  | j                        }|
|z   j                  |      }| j                   s| j                  |      }|f}|r||fz  }|S )a  
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence..
        )rq   rr   r2   r0   rs   rt   ru   rL   rI    )r   r   r   r   rQ   rG   rN   shaper   r|   r   r   r   r   r}   )r,   rq   r0   rs   rr   rt   r   r2   ru   rV   residualself_attn_weightshidden_states_shapeoutputss                 r.   r9   zOPTDecoderLayer.forward   s   < ! $$ 55mDM ,:4>> 	,
')%)+/)	,
 	,
(( --mt||VZVcVc-d =0 (( 55mDM ,11%--b-2D2DR2HI  $$ 11-@M/**=9/--mt||VZVcVc-d!M1778KL (( 11-@M ")++Gr/   r   )NNNFFNN)r:   r;   r<   r   r   r>   r+   r6   r   r   r   r?   r   r   FloatTensorr9   r@   rA   s   @r.   r   r      s   vy vXc] v( 26268<,1$)3715P||P !.P "%,,/	P
 !u||!45P $D>P D>P u//0P !.P -.P 
u  (51B1BEDUDU1U+V"WW	XPr/   r   c                   @    e Zd ZU eed<   dZdZdgZdZdZ	dZ
dZdZd Zy)OPTPreTrainedModelr\   modelTr   c                    | j                   j                  }t        |t        j                        rY|j
                  j                  j                  d|       |j                  %|j                  j                  j                          y y t        |t        j                        rf|j
                  j                  j                  d|       |j                  2|j
                  j                  |j                     j                          y y t        |t        j                        rJ|j
                  j                  j                  d       |j                  j                  j                          y y )Nrz   )meanstdr{   )r\   init_std
isinstancer   rl   weightdatanormal_r`   zero_	Embeddingpadding_idxr   fill_)r,   rB   r   s      r.   _init_weightsz OPTPreTrainedModel._init_weights>  s    kk""fbii(MM&&CS&9{{&  &&( '-MM&&CS&9!!-""6#5#56<<> .-MM$$S)KK""$ .r/   N)r:   r;   r<   r   __annotations__base_model_prefixsupports_gradient_checkpointing_no_split_modules_supports_attention_backend_supports_flash_attn_supports_sdpa_supports_flex_attn_can_compile_fullgraphr   r   r/   r.   r   r   1  s?    &*#*+"&N!%r/   r   c                       e Zd ZdZdef fdZ	 ddeej                  df   dej                  dej                  de	d	e
f
d
Zedej                  dededej                  dej                  defd       Ze	 	 	 	 	 	 	 	 	 	 	 ddeej$                     deej                     deej                     dee	   deej&                     dee
   d	ee
   dee
   dee
   deej$                     deej                     dee   deeef   fd       Z xZS )
OPTDecoderz
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]

    Args:
        config: OPTConfig
    r\   c           	      8   t         |   |       |j                  | _        |j                  | _        |j                  | _        |j                  | _        |j                  | _        t        j                  |j                  |j                  | j
                        | _        t        |j                  |j                        | _        |j                  |j                  k7  r2t        j                   |j                  |j                  d      | _        nd | _        |j                  |j                  k7  r2t        j                   |j                  |j                  d      | _        nd | _        |j&                  r=|j(                  s1t        j*                  |j                  |j,                        | _        nd | _        t        j0                  t3        |j4                        D cg c]  }t7        ||       c}      | _        d| _        | j=                          y c c}w )NFr_   r   )r]   )r*   r+   rG   	layerdroppad_token_idr   max_position_embeddingsmax_target_positions
vocab_sizer   r   word_embed_proj_dimembed_tokensr#   ra   embed_positionsrl   project_out
project_inr   _remove_final_layer_normr   r   r   
ModuleListrangenum_hidden_layersr   layersgradient_checkpointing	post_init)r,   r\   ir-   s      r.   r+   zOPTDecoder.__init__U  s    ~~))!..$*$B$B! ++LL):):F<V<VX\XhXhi<V=[=[]c]o]op%%););;!yy););V=W=W^cdD#D%%););; ii(B(BFDVDV]bcDO"DO
 &&v/N/N$&LL""v7[7[%D! %)D!mmSXY_YqYqSr$sa_Vq%I$st&+#	 %ts   Hr0   r    input_tensorru   past_key_valuesrt   c           	         | j                   j                  dk(  r||dk(  j                         r|S y | j                   j                  dk(  r't        |t        j
                        rt        |      }|S ||j                         nd}||j                  nd}| j                   j                  dk(  r(|s&|s$t        j                  |||| j                        ry |j                  }|j                  d   }	|r|j                         }
n1t        |t        j
                        r|j                  d	   n||	z   dz   }
| j                  ||	|
|||j                  d   
      }| j                   j                  dk(  rQ|O|j                   j"                  dv r7|s5t	        j$                  |      j&                  }t        j(                  ||      }|S )Nflash_attention_2rz   flex_attentionr   Fry   )inputs_embedsr1   is_trainingr   rI   )sequence_lengthtarget_lengthrK   ru   
batch_size)cudaxpunpu)r\   r   anyr   r6   r   r!   get_seq_lengthis_compileabler   _ignore_causal_mask_sdparN   rK   r   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positiondevicetypefinfomin_unmask_unattended)r,   r0   r   ru   r   rt   past_seen_tokensusing_compilable_cacherK   r   r   causal_mask	min_dtypes                r.   _update_causal_maskzOPTDecoder._update_causal_mask{  s    ;;++/BB)~/D.I.I.K%%;;++/??.%,,7!<^!L!!
 @O?Z?99;`aCRC^!?!?di ;;++v5>T]n%>>*'7 MM	 ""&,,Q/!+??AM nell; $$R(%7!;  PP+')#))!, Q 
 KK,,6*%%**.DD%
 E*..I0CCKQZ[Kr/   r   r   rK   r   c                    | | j                         dk(  r| }|S t        j                  |      j                  }t        j                  ||f|||j
                        }|dk7  rt        j                  |d      }|t        j                  ||j
                        |j                  dd      kD  z  }|ddddddf   j                  |ddd      }| |j                         }| j                  d   }	|ddddddd|	f   | ddddddf   j                  |j
                        z   }
|
dk(  }
|ddddddd|	f   j                  |
|      |ddddddd|	f<   |S )	aM  
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        N   )
fill_valuerK   r   r   )diagonalr   rI   r   )r5   r6   r   r   fullr   triuaranger   expandcloner   rT   masked_fill)r0   r   r   rK   ru   r   rV   r   r   mask_lengthpadding_masks              r.   r   z@OPTDecoder._prepare_4d_causal_attention_mask_with_cache_position  s   > %.*<*<*>!*C(K* ' E*..I** -0Ye\j\q\qK !##jjqA5<<n>S>STWeWmWmnprsWtttK%dD!Q&67>>z1bRTUK))//1,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c )6Aq!\k\12 r/   	input_ids	head_maskr   r   output_hidden_statesreturn_dictr2   rV   rv   c                    ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|	|	n| j                   j                  }	|du |duz  rt        d      | j                  r%| j                  r|rt        j                  d       d}||j                  d|j                  d         }|| j                  |      }|r|
t               }||j                         nd}|2t        j                   |||j                  d   z   |j"                        }|A||j                  d   z   }t        j$                  |j                  d   ||j"                        }| j'                  |||||      }|
8t        j(                  |d	      }
|
|z  dz
  j+                         }
|
dd|df   }
| j-                  |||

      }| j.                  | j/                  |      }||j1                  |j"                        z   }|rdnd}|rdnd}t3        |gdg      D ]j  \  }}|	|j5                         d   t7        | j8                        k7  s3t        d| dt7        | j8                         d|j5                         d    d       t;        | j8                        D ]g  \  }}|r||fz  }| j                  r%t        j<                  g       }|| j>                  k  r? ||f||
|||   nd||||d|}|d   }|s_||d   fz  }i | j@                  | jA                  |      }| jB                  | jC                  |      }|r||fz  }tE        ||||      S )a  
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
                config.n_positions - 1]`. for padding use -1.

                [What are position IDs?](../glossary#position-ids)
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
                this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
                the complete sequence length.
        Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FrI   r   r   r   r4   )r2   r   r   zThe `z` should be specified for z layers, but it is for .)r0   r2   rs   rr   rt   r   ru   last_hidden_stater   rq   
attentions)#r\   rt   r   r   use_return_dictrk   r   rN   rg   rh   r}   r   r   r   r   r6   r   r   onesr   r7   r8   r   r   rT   zipr|   lenr   	enumeraterandr   r   r   r   )r,   r   r0   r   r   r   r   rt   r   r   r2   ru   rV   r   
seq_lengthr   
pos_embedsrq   all_hidden_statesall_self_attns	attn_mask	mask_nameidxdecoder_layerdropout_probabilitylayer_outputss                             r.   r9   zOPTDecoder.forward  s   P 2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	%0%<k$++B]B]-t";<YZZ&&4==Yj I !r9??2+>?I  --i8M0*nO?N?Z?99;`a!"\\ "2]5H5H5K"KTaThThN !)M,?,?,BBJ"ZZ(;(;A(>
S`SgSghN..M>?L]

  <<A>L(>9A=CCEL'+;+<(<=L)).:JYe)f
??& OOM:M%
m6J6J(KK #7BD0d %(k]$C 	 Iy$>>#A&3t{{+;<$	{*DSEUDV W%NN,Q/03 	 #,DKK"8 	6C#!m%55!}}&+jjn#&7)
*)3<3H3d."3#-
 
M *!,M =#3"553	66   , 11-@M' ,,];M  -!11&+++%	
 	
r/   )FNNNNNNNNNNN)r:   r;   r<   r=   r   r+   r   r6   r   r   r   r   staticmethodr>   rK   r   r   r   r?   r   r   r   r   r   r9   r@   rA   s   @r.   r   r   M  s   #y #X #(BellK78B llB 	B
 B  BH 444 4 {{	4
 4 4 4l  1515,0+/59$(,0/3&*3715u
E,,-u
 !.u
 ELL)	u

 "%u
   1 12u
 D>u
 $D>u
 'tnu
 d^u
 u//0u
 !.u
 -.u
 
u--	.u
 u
r/   r   c                       e Zd Zdef fdZd Zd Zd Zee		 	 	 	 	 	 	 	 	 	 	 dde
ej                     de
ej                     de
ej                     d	e
eeej                      ef      d
e
ej                      de
e   de
e   de
e   de
e   de
ej                     de
ej                     dee   deeef   fd              Z xZS )OPTModelr\   c                 d    t         |   |       t        |      | _        | j	                          y r   )r*   r+   r   decoderr   r,   r\   r-   s     r.   r+   zOPTModel.__init__  s&     !&)r/   c                 .    | j                   j                  S r   r  r   r,   s    r.   get_input_embeddingszOPTModel.get_input_embeddings  s    ||(((r/   c                 &    || j                   _        y r   r  r,   rE   s     r.   set_input_embeddingszOPTModel.set_input_embeddings  s    $)!r/   c                     | j                   S r   )r  r  s    r.   get_decoderzOPTModel.get_decoder  s    ||r/   r   r0   r   r   r   r   rt   r   r   r2   ru   rV   rv   c                 |   ||n| j                   j                  }||n| j                   j                  }||n| j                   j                  }|	|	n| j                   j                  }	 | j
                  d|||
||||||d|d|}t        |j                  |j                  |j                  |j                        S )NTr   r0   r2   r   r   r   r   rt   r   r   ru   r  r   )r\   rt   r   r   r  r  r   r  r   rq   r  )r,   r   r0   r   r   r   r   rt   r   r   r2   ru   rV   decoder_outputss                 r.   r9   zOPTModel.forward  s    " 2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	%0%<k$++B]B] '$,, 
)%+'/!5)
 
 '-??+;;)77&11	
 	
r/   r  )r:   r;   r<   r   r+   r   r#  r%  r   r   r   r6   r?   r   r   listr   r   r   r   r   r   r   r9   r@   rA   s   @r.   r  r    sT   y )*  1515,0KO59$(,0/3&*3715+
E,,-+
 !.+
 ELL)	+

 "%U->->(?(F"GH+
   1 12+
 D>+
 $D>+
 'tn+
 d^+
 u//0+
 !.+
 -.+
 
u--	.+
  +
r/   r  c            !           e Zd ZdgZ fdZd Zd Zd Zd Ze	e
	 	 	 	 	 	 	 	 	 	 	 	 ddeej                     deej                     d	eej                     d
eeeej"                     ef      deej"                     deej                     dee   dee   dee   dee   deej                     deej                     dee   deeef   fd              Z xZS )OPTForCausalLMzlm_head.weightc                     t         |   |       t        |      | _        t	        j
                  |j                  |j                  d      | _        | j                          y NFr_   )
r*   r+   r  r   r   rl   r   r   lm_headr   r  s     r.   r+   zOPTForCausalLM.__init__  sK     f%
 yy!;!;V=N=NUZ[ 	r/   c                 B    | j                   j                  j                  S r   r   r  r   r  s    r.   r   z#OPTForCausalLM.get_input_embeddings      zz!!...r/   c                 :    || j                   j                  _        y r   r0  r"  s     r.   r#  z#OPTForCausalLM.set_input_embeddings      */

'r/   c                 &    || j                   _        y r   r   r  )r,   r  s     r.   set_decoderzOPTForCausalLM.set_decoder  s    $

r/   c                 .    | j                   j                  S r   r5  r  s    r.   r%  zOPTForCausalLM.get_decoder  s    zz!!!r/   r   r0   r   r   r   labelsr   rt   r   r   r2   ru   rV   rv   c                     ||n| j                   j                  }|	|	n| j                   j                  }	|
|
n| j                   j                  }
 | j                  j
                  d|||||||||	d|d|}| j                  |d         j                         }d}|E|j                  |j                        } | j                  ||fd| j                   j                  i|}t        |||j                  |j                  |j                        S )an  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, OPTForCausalLM

        >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
        ```NTr'  r   r   losslogitsr   rq   r  r   )r\   rt   r   r  r   r  r.  rU   rT   r   loss_functionr   r   r   rq   r  )r,   r   r0   r   r   r   r8  r   rt   r   r   r2   ru   rV   r   r<  r;  s                    r.   r9   zOPTForCausalLM.forward
  s;   R 2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B] %$**$$ 
)%+'/!5)
 
 gaj)446YYv}}-F%4%%  ;;11 	D &#33!//))
 	
r/   NNNNNNNNNNNN)r:   r;   r<   _tied_weights_keysr+   r   r#  r6  r%  r   r   r   r6   r?   r   r   r)  r   r   r   r   r   r   r   r9   r@   rA   s   @r.   r+  r+    s   *+/0%"  1515,0KO59-1$(,0/3&*3715P
E,,-P
 !.P
 ELL)	P

 "%U->->(?(F"GHP
   1 12P
 ))*P
 D>P
 $D>P
 'tnP
 d^P
 u//0P
 !.P
 +,P
 
u,,	-P
  P
r/   r+  a  
    The OPT Model transformer with a sequence classification head on top (linear layer).

    [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   r    e Zd Zdef fdZe	 	 	 	 	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee
eej                     ef      deej                     deej                     d	ee   d
ee   dee   dee   deej                     de
eef   fd       Zd Zd Z xZS )OPTForSequenceClassificationr\   c                     t         |   |       |j                  | _        t        |      | _        t        j                  |j                  | j                  d      | _        | j                          y r-  )
r*   r+   
num_labelsr  r   r   rl   r   scorer   r  s     r.   r+   z%OPTForSequenceClassification.__init__n  sT      ++f%
YYv994??QVW
 	r/   r   r0   r   r   r   r8  r   rt   r   r   r2   rv   c                    |
|
n| j                   j                  }
| j                  |||||||||	|

      }|d   }| j                  |      }||j                  dd \  }}n|j                  dd \  }}| j                   j
                  |dk7  rt        d      | j                   j
                  d}n||| j                   j
                  k7  j                  |j                  t        j                        }t        j                  |j                  d   |j                  t        j                        }||z  j                  d      }n.d}t        j                  | j                  j                    d	       |t        j                  ||j                  
      |f   }d}|| j                   j"                  | j$                  dk(  rd| j                   _        nl| j$                  dkD  rL|j&                  t        j(                  k(  s|j&                  t        j*                  k(  rd| j                   _        nd| j                   _        | j                   j"                  dk(  rIt-               }| j$                  dk(  r& ||j/                         |j/                               }n |||      }n| j                   j"                  dk(  r=t1               } ||j3                  d| j$                        |j3                  d            }n,| j                   j"                  dk(  rt5               } |||      }|
s|f|dd z   }||f|z   S |S t7        |||j8                  |j:                  |j<                        S )a  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        N	r   r0   r2   r   r   r   rt   r   r   r   r(   r   z=Cannot handle batch sizes > 1 if no padding token is defined.rI   )r   rK   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r   
regressionsingle_label_classificationmulti_label_classificationr:  )r\   r  r   rE  r   r   rk   rT   r   r6   int32r   argmaxrg   rh   r-   r:   problem_typerD  rK   r8   r>   r	   squeezer   r}   r   r   r   rq   r  )r,   r   r0   r   r   r   r8  r   rt   r   r   r2   transformer_outputsrq   r<  r   r   last_non_pad_tokennon_pad_masktoken_indicespooled_logitsr;  loss_fctoutputs                           r.   r9   z$OPTForSequenceClassification.forwardw  s   * &1%<k$++B]B]"jj+)%'/!5# ) 
 ,A.M* *3//"1*='J*7*=*=bq*A'J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||Jv}}MOaab{{''/??a'/;DKK,__q(fllejj.HFLL\a\e\eLe/LDKK,/KDKK,{{''<7"9??a'#M$9$9$;V^^=MND#M6:D))-JJ+- 2 22t GUWY))-II,.v6#%(;AB(??F)-)9TGf$EvE/ /??-;;*55
 	
r/   c                 B    | j                   j                  j                  S r   r0  r  s    r.   r   z1OPTForSequenceClassification.get_input_embeddings  r1  r/   c                 :    || j                   j                  _        y r   r0  r"  s     r.   r#  z1OPTForSequenceClassification.set_input_embeddings  r3  r/   r  )r:   r;   r<   r   r+   r   r   r6   r?   r   r   r)  r   r   r   r   r9   r   r#  r@   rA   s   @r.   rB  rB  _  sL   y   156:15KO59-1$(,0/3&*37\
E,,-\
 !!2!23\
 E--.	\

 "%U->->(?(F"GH\
   1 12\
 ))*\
 D>\
 $D>\
 'tn\
 d^\
 u//0\
 
u66	7\
 \
|/0r/   rB  c                       e Zd Zdef fdZe	 	 	 	 	 	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee
eej                     ef      deej                     deej                     d	eej                     d
ee   dee   dee   dee   deej                     de
eef   fd       Zd Zd Z xZS )OPTForQuestionAnsweringr\   c                     t         |   |       t        |      | _        t	        j
                  |j                  d      | _        | j                          y r'   )	r*   r+   r  r   r   rl   r   
qa_outputsr   r  s     r.   r+   z OPTForQuestionAnswering.__init__  s@     f%
))F$>$>B 	r/   r   r0   r   r   r   start_positionsend_positionsr   rt   r   r   r2   rv   c                    ||n| j                   j                  }| j                  ||||||||	|
|
      }|d   }| j                  |      }|j	                  dd      \  }}|j                  d      j                         }|j                  d      j                         }d}||t        |j                               dkD  r|j                  d      }t        |j                               dkD  r|j                  d      }|j                  d      }|j                  d|      j                  |j                        }|j                  d|      j                  |j                        }t        |      } |||      } |||      }||z   dz  }|s||f|dd z   }||f|z   S |S t        ||||j                  |j                  	      S )
a  
        Example:

        ```python
        >>> from transformers import AutoTokenizer, OPTForQuestionAnswering
        >>> import torch

        >>> torch.manual_seed(4)  # doctest: +IGNORE_RESULT
        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

        >>> # note: we are loading a OPTForQuestionAnswering from the hub here,
        >>> # so the head will be randomly initialized, hence the predictions will be random
        >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")

        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

        >>> inputs = tokenizer(question, text, return_tensors="pt")
        >>> with torch.no_grad():
        ...     outputs = model(**inputs)

        >>> answer_start_index = outputs.start_logits.argmax()
        >>> answer_end_index = outputs.end_logits.argmax()

        >>> answer_offset = len(tokenizer(question)[0])

        >>> predict_answer_tokens = inputs.input_ids[
        ...     0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
        ... ]
        >>> predicted = tokenizer.decode(predict_answer_tokens)
        >>> predicted
        ' a nice puppet'
        ```NrG  r   r   rI   r4   )ignore_indexr(   )r;  start_logits
end_logitsrq   r  )r\   r  r   r[  splitrN  rU   r	  r|   clamprT   r   r   r   rq   r  )r,   r   r0   r   r   r   r\  r]  r   rt   r   r   r2   rO  rq   r<  r`  ra  
total_lossignored_indexrT  
start_lossend_lossrU  s                           r.   r9   zOPTForQuestionAnswering.forward  s   ` &1%<k$++B]B]"jj+)%'/!5# ) 
 ,A./#)<<r<#: j#++B/::<''+668

&=+D?'')*Q."1"9"9""==%%'(1, - 5 5b 9(--a0M-33A}EHHWO)//=ADDV]]SM']CH!,@J
M:H$x/14J"J/2Eab2IIF/9/EZMF*Q6Q+%!-;;*55
 	
r/   c                 B    | j                   j                  j                  S r   r0  r  s    r.   r   z,OPTForQuestionAnswering.get_input_embeddingsI  r1  r/   c                 :    || j                   j                  _        y r   r0  r"  s     r.   r#  z,OPTForQuestionAnswering.set_input_embeddingsL  r3  r/   r>  )r:   r;   r<   r   r+   r   r   r6   r?   r   r   r)  r   r   r   r   r9   r   r#  r@   rA   s   @r.   rY  rY    se   y   156:15KO596:48$(,0/3&*37_
E,,-_
 !!2!23_
 E--.	_

 "%U->->(?(F"GH_
   1 12_
 "%"2"23_
   0 01_
 D>_
 $D>_
 'tn_
 d^_
 u//0_
 
u22	3_
 _
B/0r/   rY  )r+  r  r   rB  rY  )rz   )Ar=   typingr   r   r   r6   torch.utils.checkpointr   torch.nnr   r   r	   activationsr   cache_utilsr   r   
generationr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r   r   configuration_optr   !torch.nn.attention.flex_attentionr    integrations.flex_attentionr!   
get_loggerr:   rg   r   r#   Moduler   floatrY   r[   r   r   r   r  r+  rB  rY  __all__r   r/   r.   <module>r~     s    , ,    A A ! . ) > B 9  G & p p (  !;J 
		H	%;BLL ;H %II%<<% 
% <<	%
 U\\*% % %.b)299 b)Jb0 bJ % % %6`
# `
F =
! =
 =
@k
' k
\ m0#5 m0m0` o00 o0 o0dr/   