
    rh"4                     <    d dl mZmZ d dlmZ  G d de      ZdgZy)   )PretrainedConfiglayer_type_validation)rope_config_validationc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )SmolLM3Configa  
    This is the configuration class to store the configuration of a [`SmolLM3Model`]. It is used to instantiate a
    SmolLM3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the SmolLM3 3B.
    e.g. [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the SmolLM3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`SmolLM3Model`]
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `16`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 128004):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 128000):
            The id of the beginning of sentence token.
        eos_token_id (`int`, *optional*, defaults to 128001):
            The id of the end of sentence token.
        rope_theta (`float`, *optional*, defaults to 2000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*):
            Sliding window attention (SWA) window size. If not specified, will default to `None`.
        no_rope_layers (`List[int]`, *optional*):
            List with at least the same length as the number of layers in the model.
            A `1` at an index position indicates that the corresponding layer will use RoPE,
            while a `0` indicates that it's a NoPE layer.
        no_rope_layer_interval (`int`, *optional*, defaults to 4):
            If `no_rope_layers` is `None`, it will be created using a NoPE layer every
            `no_rope_layer_interval` layers.
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Automatically computed based on sliding window and NoPE settings.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import SmolLM3Model, SmolLM3Config

    >>> # Initializing a SmolLM3 style configuration
    >>> configuration = SmolLM3Config()

    >>> # Initializing a model from the SmolLM3 style configuration
    >>> model = SmolLM3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```smollm3past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    t        |   d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        || _
        ||}|| _        || _        |	| _        |
| _        || _        || _        || _        || _        || _        |1t)        |      D cg c]  }t+        |dz   |z  dk7         c}| _        n|| _        || _        |Jg }t)        |      D ]:  }| j,                  |   }|r||s|j1                  d       *|j1                  d       < || _        t5        | j2                         | j"                  *d| j"                  v r| j"                  d   | j"                  d<   t7        |        y c c}w )	N)pad_token_idbos_token_ideos_token_id       sliding_attentionfull_attentiontype	rope_type )super__init__
vocab_sizemax_position_embeddingsmlp_biashidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsuse_sliding_windowsliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutrangeintno_rope_layersno_rope_layer_intervalappendlayer_typesr   r   )selfr    r#   r$   r%   r&   r)   r*   r!   r+   r,   r-   r   r   r   r.   r/   r'   r(   r4   r5   r7   r0   r1   r"   kwargs	layer_idxhas_rope	__class__s                               /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/smollm3/configuration_smollm3.pyr   zSmolLM3Config.__init__   s   8 	 	
%%%	
 		
 %'>$ &!2!2#6 "4, &"5#6 $!2("$(,!2!TYZkTl#GPY]&<<AB#D #1D&<# K"#45 9	..y9%.*DX&&':;&&'789 'd../ (Vt7H7H-H-1->->v-FDk*t$3#s   &F)i  i   i +  $         silui   g{Gz?gư>Ti i  i g    >ANFNNr@   NFg        F)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr   __classcell__)r<   s   @r=   r   r      s    qf J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56  %  3T% T%    r   N)configuration_utilsr   r   modeling_rope_utilsr   r   __all__r   rK   r=   <module>rO      s(   , K 9Z%$ Z%z 
rK   