
    rh9Y                     ^   d Z ddlmZ ddlmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZ dd	lmZmZm Z m!Z!  e        rddl"Z" e!jF                  e$      Z%d
e&e&e      fdZ'	 	 ddejP                  de)deee*ef      d
e+e)e)f   fdZ, G d de	      Z-dgZ.y)zImage processor class for TVP.    )Iterable)OptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)PaddingModeflip_channel_orderpadresizeto_channel_dimension_format)
IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeis_valid_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingreturnc                    t        | t        t        f      r,t        | d   t        t        f      rt        | d   d         r| S t        | t        t        f      rt        | d         r| gS t        |       r| ggS t	        d|        )Nr   z"Could not make batched video from )
isinstancelisttupler   
ValueError)videoss    /var/www/html/ai-insurance-compliance-backend/venv/lib/python3.12/site-packages/transformers/models/tvp/image_processing_tvp.pymake_batchedr%   5   s    &4-(Zq	D%=-QVdeklmenopeqVr	FT5M	*~fQi/Hx		z
9&B
CC    input_imagemax_sizeinput_data_formatc                     t        | |      \  }}||k\  r|dz  |z  }|}||z  }n|dz  |z  }|}||z  }t        |      t        |      f}|S )Ng      ?)r   int)	r'   r(   r)   heightwidthratio
new_height	new_widthsizes	            r$   get_resize_output_image_sizer2   B   sm    
 #;0ABMFEf$
&	u$	&

OS^,DKr&   c            +       >    e Zd ZdZdgZddej                  dddddddej                  ddddfde	de
eeef      d	ed
e	de
eeef      de	deeef   de	de
eeef      deeee   f   dede	de	de
eeee   f      de
eeee   f      ddf  fdZej                  ddfdej(                  deeef   d	ede
eeef      de
eeef      dej(                  fdZddej                  ddfdej(                  de
eeef      deeee   f   dede
eeef      de
eeef      fdZdddddddddddddddej0                  dfdede
e	   de
eeef      d	ed
e
e	   de
eeef      de
e	   de
e   de	de
eeef      de
eeee   f      dede
e	   de
e	   de
eeee   f      de
eeee   f      de
e   de
eeef      dej(                  f&dZ e       ddddddddddddddddej0                  dfdeeee   eee      f   de
e	   de
eeef      d	ed
e
e	   de
eeef      de
e	   de
e   de
e	   de
eeef      de
eeee   f      dede
e	   de
e	   de
eeee   f      de
eeee   f      de
eeef      dede
eeef      dej<                  j<                  f(d        Z xZ S )!TvpImageProcessora  
    Constructs a Tvp image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`dict[str, int]` *optional*, defaults to `{"longest_edge": 448}`):
            Size of the output image after resizing. The longest edge of the image will be resized to
            `size["longest_edge"]` while maintaining the aspect ratio of the original image. Can be overridden by
            `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
            parameter in the `preprocess` method.
        crop_size (`dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
            Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
            in the `preprocess` method.
        do_pad (`bool`, *optional*, defaults to `True`):
            Whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method.
        pad_size (`dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
            Size of the image after applying the padding. Can be overridden by the `pad_size` parameter in the
            `preprocess` method.
        constant_values (`Union[float, Iterable[float]]`, *optional*, defaults to 0):
            The fill value to use when padding the image.
        pad_mode (`PaddingMode`, *optional*, defaults to `PaddingMode.CONSTANT`):
            Use what kind of mode in padding.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        do_flip_channel_order (`bool`, *optional*, defaults to `True`):
            Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
            parameter in the `preprocess` method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?r   	do_resizer1   resampledo_center_crop	crop_size
do_rescalerescale_factordo_padpad_sizeconstant_valuespad_modedo_normalizedo_flip_channel_order
image_mean	image_stdr   c                 V   t        |   di | ||nddi}||nddd}|	|	nddd}	|| _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        ||nt        | _        ||| _        y t"        | _        y )Nlongest_edge  )r,   r-    )super__init__r6   r1   r8   r9   r7   r:   r;   r<   r=   r>   r?   r@   rA   r   rB   r   rC   )selfr6   r1   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   kwargs	__class__s                    r$   rI   zTvpImageProcessor.__init__   s    & 	"6"'tnc-B!*!6IsUX<Y	'38CRU9V"	," $, . (%:"(2(>*DZ&/&;AVr&   imagedata_formatr)   c                     t        |d      }d|v rd|v r|d   |d   f}n1d|v rt        ||d   |      }nt        d|j                                t	        |f||||d|S )a  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]`):
                Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
                have the size `(h, w)`. If `size` is of the form `{"longest_edge": s}`, the output image will have its
                longest edge of length `s` while keeping the aspect ratio of the original image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Fdefault_to_squarer,   r-   rE   zCSize must have 'height' and 'width' or 'longest_edge' as keys. Got )r1   r7   rN   r)   )r	   r2   r"   keysr   )rJ   rM   r1   r7   rN   r)   rK   output_sizes           r$   r   zTvpImageProcessor.resize   s    4 TU;t4>4=9Kt#6ud>>RTefKbcgclclcnbopqq
#/
 
 	
r&   c                     t        ||      \  }}	|j                  d|      }
|j                  d|	      }||	z
  |
|z
  }}|dk  s|dk  rt        d      d|fd|ff}t        ||||||      }|S )a+  
        Pad an image with zeros to the given size.

        Args:
            image (`np.ndarray`):
                Image to pad.
            pad_size (`dict[str, int]`)
                Size of the output image with pad.
            constant_values (`Union[float, Iterable[float]]`)
                The fill value to use when padding the image.
            pad_mode (`PaddingMode`)
                The pad mode, default to PaddingMode.CONSTANT
            data_format (`ChannelDimension` or `str`, *optional*)
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        )channel_dimr,   r-   r   z0The padding size must be greater than image size)moder>   rN   r)   )r   getr"   r   )rJ   rM   r=   r>   r?   rN   r)   rK   r,   r-   
max_height	max_width	pad_right
pad_bottompaddingpadded_images                   r$   	pad_imagezTvpImageProcessor.pad_image   s    6 'u:KL\\(F3
LL%0	 )E 1:3F:	q=JNOPPz?Q	N3+#/
 r&   c                    t        ||||||	|
|||||       t        |      }|r| j                  ||||      }|r| j                  |||      }|r| j	                  |||      }|r2| j                  |j                  t        j                        |||      }|	r| j                  ||
|||      }|rt        ||      }t        |||      }|S )	zPreprocesses a single image.)r:   r;   r@   rB   rC   r<   size_divisibilityr8   r9   r6   r1   r7   )rM   r1   r7   r)   )r1   r)   )rM   scaler)   )rM   meanstdr)   )rM   r=   r>   r?   r)   )rM   r)   )input_channel_dim)r   r   r   center_croprescale	normalizeastypenpfloat32r^   r   r   )rJ   rM   r6   r1   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rN   r)   rK   s                       r$   _preprocess_imagez#TvpImageProcessor._preprocess_image  s   0 	&!)%!&)	
  u%KKe$]nKoE$$UN_$`ELLuNVgLhENNll2::.ZYbs # E NN! /!"3 # E !&UFWXE+E;Rcdr&   r#   return_tensorsc                 6   ||n| j                   }||n| j                  }||n| j                  }||n| j                  }||n| j                  }|	|	n| j
                  }	|
|
n| j                  }
||n| j                  }|r|n| j                  }||n| j                  }||n| j                  }||n| j                  }||n| j                  }||n| j                  }t        |d      }||n| j                  }t        |d      }t!        |      st#        d      t%        |      }|D cg c]F  }t'        j(                  |D cg c]%  }| j+                  |||||||||	|
||||||||      ' c}      H }}}d|i}t-        ||      S c c}w c c}}w )	a9  
        Preprocess an image or batch of images.

        Args:
            videos (`ImageInput` or `list[ImageInput]` or `list[list[ImageInput]]`):
                Frames to preprocess.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after applying resize.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
                Whether to centre crop the image.
            crop_size (`dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after applying the centre crop.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_pad (`bool`, *optional*, defaults to `True`):
                Whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method.
            pad_size (`dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
                Size of the image after applying the padding. Can be overridden by the `pad_size` parameter in the
                `preprocess` method.
            constant_values (`Union[float, Iterable[float]]`, *optional*, defaults to 0):
                The fill value to use when padding the image.
            pad_mode (`PaddingMode`, *optional*, defaults to "PaddingMode.CONSTANT"):
                Use what kind of mode in padding.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
                Whether to flip the channel order of the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                    - Unset: Use the inferred channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        FrP   r9   )
param_namezkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)rM   r6   r1   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rN   r)   r5   )datatensor_type)r6   r7   r8   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   r1   r	   r9   r   r"   r%   ri   arrayrk   r   )rJ   r#   r6   r1   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rl   rN   r)   videoimgro   s                          r$   
preprocesszTvpImageProcessor.preprocessT  s   ` "+!6IDNN	'38+9+E4K^K^#-#9Zt
+9+E4K^K^!-4;;'38-<-H/dNbNb'8T]]'3'?|TEVEV%:%F!DLfLf 	 $.#9Zt
!*!6IDNN	'tTYYTU;!*!6IDNN	!)D	F#: 
 f%8  5
4 3 HH,  %+* ) **!"+!!)'5"+#-'5%!)(7!)%1.C#-"+$/*;% + 
 
: '>BB9
s   1F	*F3	FF)!__name__
__module____qualname____doc__model_input_namesr   BILINEARr
   CONSTANTboolr   dictstrr+   r   floatr   r    rI   ri   ndarrayr   r   r^   FIRSTr   rk   r   r   PILImagert   __classcell__)rL   s   @r$   r4   r4   U   s&   /b (( )-'9'B'B#.2,3-19: + 4 4!&*:>9=!&W&W tCH~&&W %	&W
 &W DcN+&W &W c5j)&W &W 4S>*&W uhuo56&W &W &W  $&W U5$u+#567&W  E%e"456!&W$ 
%&WX (:'B'B>BDH)
zz)
 38n)
 %	)

 eC)9$9:;)
 $E#/?*?$@A)
 
)
\ .29: + 4 4>BDH-zz- 4S>*- uhuo56	-
 - eC)9$9:;- $E#/?*?$@A-d %))-'+)-.2%)*.-1CG $'+04:>9=2B2H2HDH'GG D>G tCH~&	G
 %G !G DcN+G TNG !G G 4S>*G "%x(>"?@G G tnG  (~G  U5$u+#567!G" E%e"456#G$ ./%G& $E#/?*?$@A'G* 
+GR %& %))-'+)-.2%)*.!%-1CG $'+04:>9=;?(8(>(>DH)JCj$z"2Dj9I4JJKJC D>JC tCH~&	JC
 %JC !JC DcN+JC TNJC !JC JC 4S>*JC "%x(>"?@JC JC tnJC  (~JC  U5$u+#567!JC" E%e"456#JC$ !sJ!78%JC& &'JC( $E#/?*?$@A)JC* 
+JC 'JCr&   r4   )rF   N)/rx   collections.abcr   typingr   r   numpyri   image_processing_utilsr   r   r	   image_transformsr
   r   r   r   r   image_utilsr   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   r   
get_loggerru   loggerr    r%   r   r+   r~   r!   r2   r4   __all__rG   r&   r$   <module>r      s    % $ "  U U    _ ^  
		H	%
DDj!12 
D @D  c+;&; <= 38_	&JC* JCZ 
r&   